QUIESCENT MACULAR NEOVASCULARIZATION

Selda Çelik Dülger

Ankara Etlik City Hospital, Department of Ophthalmology, Ankara, Türkiye

Çelik Dülger S. Quiescent Macular Neovascularization. In: Çıtırık M, Şekeryapan Gediz B, editors. AgeRelated Macular Degeneration: Current Investigations and Treatments. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.157-168.

ABSTRACT

Quiescent macular neovascularization (MNV) is a type 1 choroidal neovascularization (CNV) that does not manifest as exudation on optical coherence tomography (OCT) within six months. On OCT, they appear as irregular retinal pigment epithelial elevations (RPE) with underlying material of moderate reflectivity. Late hyperfluorescent spots on fluorescein angiography (FA) that are not well circumscribed are seen as late hyperfluorescent plaques on indocyanine green angiography (ICGA). OCT angiography (OCTA) shows flow under the RPE and in the choriocapillaris. A cross-sectional OCT angiogram shows a vascular network structure between the RPE and Bruch’s membrane consistent with type 1 CNV. It is noteworthy that these lesions do not typically result in a decline in visual acuity unless they co-occur with central atrophy or exudation. The incidence and prevalence of these lesions vary across different studies, and they are recognized as a risk factor for exudative MNVs. In some studies, these lesions have been reported as a type of neovascularization characterized by a gradual activation rate. Predictive factors for exudation formation include decreased visual acuity, increased retinal thickness, increased diameter of pigment epithelial detachment on OCT, increased lesion area detected on OCTA, branching pattern, and hypointense halo around the lesion. In the absence of intra/ subretinal fluid with evidence of activation, sub-RPE hemorrhage, or gray hyperreflective subretinal exudative material, treatment is not recommended. Some quiescent MNVs should not be treated, even if growth is detected unless there is evidence of exudation. It has been suggested that these growing neovascular lesions may provide nutritional support for the underlying choroid and RPE. The protective effect of quiescent MNV has been reported to prevent the progression of geographic atrophy, and quiescent MNV is thought to provide oxygen to the hypoxic outer retina and choriocapillaris.

Keywords: Optical coherence tomography; Optical coherence tomography angiography; Fundus fluorescein angiography; Indocyanine green angiography; Macular degeneration; Choroidal neovascularization

Referanslar

  1. Kahn HA, Leibowitz HM, Ganley JP, et al. The Framingham Eye Study. I. Outline and major prevalence findings. AmJEpidemiol1977;106:17. [Crossref]  [PubMed]
  2. Wong T, Chakravarthy U, Klein R, Mitchell P, Zlateva G, Buggage R et al. The Natural History and Prognosis of Neovascular Age-Related Macular Degeneration. A Systematic Review of the Literature and Meta-analysis. Ophthalmology.2008;115(1):116-127. [Crossref]  [PubMed]
  3. Rudnicka A.R, Jarrar Z, Wormald R, Cook D.G, Fletcher A, Owen C.G. Age and gender variations in age-related macular degeneration prevalence in populations of European ancestry: A meta-analysis. Ophthalmology 2012, 119, 571-580. [Crossref]  [PubMed]
  4. Friedman DS, O2Colman BJ, Munoz B, Tomany SC, Mccarty C, de Jong PTVM et al. Prevalence of agerelated macular degeneration in the United States. Arch Ophthalmol 2004;122:564-72. [Crossref]  [PubMed]
  5. Smith W, Assink J, Klein R, Mitchell P, Klaver CC, Kelain BE et al. Risk factors for age-related macular dgeneration: pooled findings from three continents. Ophthalmology 2001;108:697-704. [Crossref]  [PubMed]
  6. Guyer DR, Fine SL, Maguire MG, hawkins BS, Owens SL, Murphy RP. Subfoveal choroidal neovascular membranes in age-related macular degeneration: visual prognosis in eyes with relatively good initial visual acuity. Arch Ophthalmol 1986;104:702-5. [Crossref]  [PubMed]
  7. Ferris FL III, Fine SL, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 1984;102:1640-2. [Crossref]  [PubMed]
  8. Macular Photocoagulation Study Group. Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Arch Ophthalmol. 1991;109:1242-125. [Crossref]  [PubMed]
  9. Hughes EH, Khan J, Patel N, Kashani S, Chong NV. In vivo demonstration of the anatomic differences between classic and occult choroidal neovascularization using optical coherence tomography. Am J Ophthalmol. 2005;139:344-346. [Crossref]  [PubMed]
  10. Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T. Ranibizumab versus Verteporfin Photodynamic Therapy for Neovascular Age-Related Macular Degeneration: Two-Year Results of the ANCHOR Study. Ophthalmology. 2006;116(1):57-65.e5. [Crossref]  [PubMed]
  11. Querques G, Srour M, Massamba N, Georges A, Ben Moussa N, Rafaeli O, et al. Functional characterization and multimodal imaging of treatment-naive "quiescent" choroidal neovascularization. InvestOphthalmolVisSci.2013;54(10):6886-92. [Crossref]  [PubMed]
  12. Yanagi Y, Mohla A, Lee W-K, et al. Prevalence and Risk Factors for Nonexudative Neovascularization in Fellow Eyes of Patients With Unilateral Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy. Investig Opthalmology Vis Sci. 2017;58:3488. [Crossref]  [PubMed]
  13. Forte R, Coscas F, Serra R, Cabral D, Colantuono D, Souied EH. Long-term follow-up of quiescent choroidal neovascularisation associated with age-related macular degeneration or pachychoroid disease. Br J Ophthalmol. 2020;104(8):1057-63. [Crossref]  [PubMed]
  14. Fukushima A, Maruko I, Chujo K, Hasegawa T, Arakawa H, Iida T. Characteristics of treatment-naïve quiescent choroidal neovascularization detected by optical coherence tomography angiography in patients with age-related macular degeneration. Graefe's Arch Clin Exp Ophthalmol. 2021;259(9):2671-7. [Crossref]  [PubMed]
  15. Mentes J, Karaca I and Sermet F. Multimodal imaging characteristics of quiescent type 1 neovascularization in an eye with angioid streaks. Am J Ophthalmol Case Rep 2018 Feb24:10:132-136. [Crossref]  [PubMed]  [PMC]
  16. Carnevali A, Sacconi R, Querques L, Corbelli E, Rabiola A, Chiari G et al. Abnormal quiescent neovascularization in a patient with large colloid drusen visualized by optical coherence tomography angiography. Retin Cases Brief Rep2018; 12: S41-S45. [Crossref]  [PubMed]
  17. Carnevali A, Capuano V, Sacconi R, Querques L, Marchese A, Rabiolo A et al. OCT angiography of treatment-naïve quiescent choroidal neovascularization in pachychoroid neovasculopathy. Ophthalmol Retina 2017; 1: 328-332. [Crossref]  [PubMed]
  18. Palejwala NV, Jia Y, Simon SG, Liu L, Flaxel CJ et al.. Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography. Retina. 2015 November ;35(11): 2204-2211. [Crossref]  [PubMed]  [PMC]
  19. Miller H, Miller B, Ryan SJ. Newly-formed subretinal vessels. Fine structure and fluorescein leakage. Invest Ophthalmol Vis Sci. 1986; 27(2):204-213. [Link]
  20. Gass JDM. Serous retinal pigment epithelial detachment with a notch. Retina. 1984; 4(4):205-220. [Crossref]  [PubMed]
  21. Roisman L, Zhang Q, Wang RK, Gregori G, Zhang A, Chen C-L, et al. Optical Coherence Tomography Angiography of Indocyanine Green Angiographic Plaques in Asymptomatic Intermediate Age- Related Macular Degeneration HHS Public Access. Ophthalmology [Internet]. 2016;123(6):1309-19. [Crossref]  [PubMed]  [PMC]
  22. Laiginhas R, Yang J, Rosenfeld PJ, Falcão M. Nonexudative Macular Neovascularization - A systematic review of prevalence, natural history, and recent insights from OCT angiography. Ophthalmol Retina. 2020;4:651-661. [Crossref]  [PubMed]  [PMC]
  23. Giovannini A, Amato GP, Mariotti C, Scassellati-Sforzolini B. OCT imaging of choroidal neovascularization and its role in the determination of patients' eligbility for surgery. Br J Ophthalmol 1999;83(4):438-442. [Crossref]  [PubMed]  [PMC]
  24. Coscas F, Coscas G, Souied E, Tick S, Soubrane G. Optical coherence tomography identification of occult choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 2007;144(4):592-599. [Crossref]  [PubMed]
  25. Carnevali A, Cicinelli MV, Capuano V, Corvi F, Mazzaferro A, Querques L, et al. Optical Coherence Tomography Angiography: A Useful Tool for Diagnosis of Treatment-Naïve Quiescent Choroidal Neovascularization. Am J Ophthalmol [Internet]. 2016;169:189-98. [Crossref]  [PubMed]
  26. Capuano V, Miere A, Querques L, Sacconi R, Carnevali A, Amoroso F, et al. Treatment-Naïve Quiescent Choroidal Neovascularization in Geographic Atrophy Secondary to Nonexudative Age-Related Macular Degeneration. Am J Ophthalmol [Internet]. 2017;182:45-55. [Crossref]  [PubMed]
  27. Novais EA, Mehreen Adhi, Moult EM, Louzada RN, Cole ED, Husvogt L et al. Choroidal neovascularization analyzed on ultra-high speed swept source optical coherence tomography angiography compared to spectral domain optical coherence tomography angiography. Am J Ophthalmol. 2016;164:80-88. [Crossref]  [PubMed]  [PMC]
  28. Coscas F, Lupidi M, Boulet JF, Sellam A, Cabral D, Serra R, et al. Optical coherence tomography angiography in exudative age-related macular degeneration: A predictive model for treatment decisions. Br J Ophthalmol. 2019;103(9):1342-56. [Crossref]  [PubMed]  [PMC]
  29. Al-Sheikh M, Falavarjani KG, Tepelus TC, Sadda SR. Quantitative comparison of Swept-Source and spectral-domain OCT angiography in healthy eyes. Ophthalmic Surg Lasers Imaging Retina 2017;48:385-91. [Crossref]  [PubMed]
  30. Roberts PK, Nesper PL, Gill MK, Fawzi AA. Semiautomated quantitative approach to characterize treatment response in neovascular age-related macular degeneration. Retina 2017;37:1492-8. [Crossref]  [PubMed]  [PMC]
  31. Ores R, Puche N, Querques G, Blanco-Garavito R, Merle B, Coscas G et al. Gray hyper-reflective subretinal exudative lesions in exudative age-related macular degeneration. AmJ Ophthalmol 2014;158:354-61. [Crossref]  [PubMed]
  32. Hata M, Yamashiro K, Ooto S, Oishi A, Tamura H, Miyata M et al. Intraocular vascular endothelial growth factor levels in pachychoroid Neovasculopathy and neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 2017;58:292-8. [Crossref]  [PubMed]
  33. Matsumoto H, Hiroe T, Morimoto M, Mimura K, Ito Ariso, Akiyama H. Efficacy of treat-and-Extend regimen with aflibercept for pachychoroid neovasculopathy and type 1 neovascular age-related macular degeneration. Jpn J Ophthalmol 2018;62:144-50. [Crossref]  [PubMed]
  34. Padrón-Pérez N, Arias L, Rubio M, lorenzo D, Barcia-Bru P, Catala-Mora J et al. Changes in choroidal thickness after intravitreal injection of anti-vascular endothelial growth factor in pachychoroid Neovasculopathy. Invest Ophthalmol Vis Sci 2018;59:1119-24. [Crossref]  [PubMed]
  35. Serra R, Coscas F, Boulet JF, Cabral D, Lupidi M, Coscas GJ, et al. Predictive Activation Biomarkers of Treatment-Naive Asymptomatic Choroidal Neovascularization in Age-Related Macular Degeneration. Retina. 2020;40(7):1224-33. [Crossref]  [PubMed]
  36. Carnevali A, Capuano V, Sacconi R, Querques L, Marchese A, Rabiolo A, et al. OCT Angiography of Treatment-Naïve Quiescent Choroidal Neovascularization in Pachychoroid Neovasculopathy. Ophthalmol Retin [Internet]. 2017;1(4):328-32. [Crossref]  [PubMed]
  37. Miller JW. Comparison of Age-Related Macular Degeneration Treatments Trials 2: Introducing Comparative Effectiveness Research. Ophthalmology2020;127(4):S133-4. [Crossref]  [PubMed]
  38. Maguire MG, Daniel E, Shah AR, grunwald JE, hagstrom SA, Avery RL et al. Incidence of choroidal neovascularization in the fellow eye in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2013;120:2035-2041. [Crossref]  [PubMed]  [PMC]
  39. Treister AD, Nesper PL, Fayed AE, Gill MK, Mirza RG, Fawzi AA. Prevalence of subclinical CNV and choriocapillaris nonperfusion in fellow eyes of unilateral exudative AMD on OCT angiography. Transl Vis Sci Technol. 2018;7(5). [Crossref]  [PubMed]  [PMC]
  40. Bailey ST, Thaware O, Wang J, Hagag AM, Zhang X, Flaxel CJ, et al. Detection of Nonexudative Choroidal Neovascularization and Progression to Exudative Choroidal Neovascularization Using OCT Angiography. Ophthalmol Retin. 2019;3(8):629-36. [Crossref]  [PubMed]  [PMC]
  41. de Oliveira Dias JR, Zhang Q, Garcia JMB, Zheng F, Motulsky EH, Roisman L, et al. Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography. Ophthalmology. 2018;125(2):255-66. [Crossref]  [PubMed]  [PMC]
  42. Carnevali A, Sacconi R, Querques L, Marchese A, Capuano V, Rabiolo A, et al. Natural History of Treatment-Naïve Quiescent Choroidal Neovascularization in Age-Related Macular Degeneration Using OCT Angiography. Ophthalmol Retin [Internet]. 2018;2(9):922-30. [Crossref]  [PubMed]
  43. Solecki L, Loganadane P, Gauthier AS, Simonin M, Puyraveau M, Delbosc B, et al. Predictive factors for exudation of quiescent choroidal neovessels detected by OCT angiography in the fellow eyes of eyes treated for a neovascular age-related macular degeneration. Eye [Internet]. 2021;35(2):644-50. [Crossref]  [PubMed]  [PMC]
  44. Heiferman MJ, Fawzi AA. Progression of subclinical choroidal neovascularization in age-related macular degeneration. PLoS One. 2019;14(6):1-9. [Crossref]  [PubMed]  [PMC]
  45. Wong TY, Lanzetta P, Bandello F, Eldem B, Navarro R, Lövestam-Adrian M, et al. Current concepts and modalities for monitoring the fellow eye in neovascular age-related macular degeneration: An Expert Panel Consensus. Retina. 2020;40:599-611. [Crossref]  [PubMed]  [PMC]
  46. Pfau M, Moller PT, Kunzel SH, von der Emde L, Lindner M, Thiele S, et al. Type 1 choroidal neovascularization is associated with reduced localized progression of atrophy in age-related macular degeneration. Ophthalmol Retina. 2020;4:238-248. [Crossref]  [PubMed]