Radiopharmaceuticals for Glioma Imaging

eczacilikbilimleri-1-2-2021

Fidan Gülçin ONARALa, Mine SİLİNDİR GÜNAYa, A. Yekta ÖZERa

aHacettepe University Faculty of Pharmacy, Department of Radiopharmacy, Ankara, TURKEY

ABSTRACT
Gliomas are one of the most commonly seen central nervous system tumors. Correct tumor diagnosis and grading and appropriate treatment planning are significant to prevent the disease course. Although MRI is mostly used for glioma diagnosis, functional medical imaging modalities such as SPECT and PET provide important information about metabolism, physiology and function for diagnosis of gliomas. While 99mTc-methoxyisobutylisonitrile (MIBI), 123I-alpha-methyl-L-tyrosine (IMT), Thallium-201 (201Tl), 99mTc-ethyl cysteine dimer (ECD), 99mTc-hexamethylpropylene amine oxime (HMPAO), 99mTc-tetrofosmine and 111In-pentetreotide can be used for SPECT imaging, glucose metabolism tracer like 18F-fluorodeoxyglucose (FDG), protein synthesis imaging radiolabeled amino acids such as 11C-methionine, 18F-3,4-dihydroxyphenylalanine (FDOPA) and O-[(2-18F-Fluoroethyl)-1- Tyrosine (FET)] and DNA replication imaging agent such as 18F-fluorothymidine (FLT) can be utilized for PET imaging of glioma. Additionally, new studies have been performed with labeled biomolecules, targeted nano-sized delivery systems and also theranostic systems for specific diagnosis and/or therapy of brain tumors especially gliomas.
Keywords: Glioma imaging; radiopharmaceuticals; targeted tracers; PET tracers; SPECT tracers

Referanslar

  1. Jung J, Ahn bC. Current radiopharmaceuticals for positron emission tomography of brain tumors. brain Tumor Res Treat. 2018;6(2):47- 53. [Crossref]  [PubMed]  [PMC]
  2. Zhang J, Traylor KS, Mountz JM. PET and SPECT imaging of brain tumors. Seminars in Ultrasound, CT MR. 2020;41(6):530-40. [Crossref]  [PubMed]
  3. Louis DN, Perry A, Reifenberger G, Deimling A, Figarella-branger D, Cavenee WK, et al. The 2016 World Health Organization, classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803-20. [Crossref]  [PubMed]
  4. Bangiyev L, Rossi Espagnet MC, Young R, Shepherd T, Knopp E, Friedman K, et al. Adult brain tumor imaging: State of the art. Semin Roentgenol. 2014;49(1):39-52. [Crossref]  [PubMed]
  5. Dunet v, Pomoni A, Hottinger A, NicodLalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol. 2016;18(3):426- 34. [Crossref]  [PubMed]  [PMC]
  6. Heiss WD, Raab P, Lanfermann H. Multimodality assessment of brain tumors and tumor recurrence. J Nucl Med. 2011;52(10):1585-600. [Crossref]  [PubMed]
  7. Theobald T. Sampson's Textbooks of Radiopharmacy, 4th ed. London: Pharmaceutical Press; 2010.
  8. Chen W, Silverman DHS. Advances in evaluation of primary brain tumors. Semin Nucl Med. 2008;38(4):240-50. [Crossref]  [PubMed]
  9. Herscovitch P. Single-photon emission computed tomography (SPECT). In: Aminoff MJ, Daroff Rb, eds. Encyclopedia of the Neurological Sciences. 2nd ed. Academic Press; 2014. p.173-8. [Crossref]
  10. Ancri D, basset JY. Diagnosis of cerebral metastases by thallium 201. british Journal of Radiology. 1978;53(629):443-53. [Crossref]  [PubMed]
  11. Benard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med. 2003;33(2): 148-62. [Crossref]  [PubMed]
  12. Hackett EC. SPECT and SPECT/CT in oncological brain ımaging. In: Fragoso CP, Santos A, vidovič b, eds. brain Imaging. 1st ed. vienna: European Association of Nuclear Medicine; 2015. p.26-32.
  13. O'Tuama LA, Treves ST, Larar JN, Packard Ab, Kwan AJ, barnes PD, et al. Thallium-201 versus technetium-99m-MIbI SPECT in evaluation of childhood brain tumors: a within-subject comparison. J Nucl Med. 1993;34 (7):1045-51.
  14. Nagamachi S, Jinnouchi S, Nabeshima K, Nishii R, Flores L, Kodama T, et al. The correlation between 99mTc-MIbI uptake and MIb-1 as a nuclear proliferation marker in glioma-a comparative study with 201Tl. Neuroradiology. 2001;43(12):1023-30. [Crossref]  [PubMed]
  15. Ak I, Gulbas Z, Altinel F, vardareli E. Tc-99m MIbI uptake and its relation to the proliferative potential of brain tumors. Clin Nucl Med. 2003;28(1):29-33. [Crossref]  [PubMed]
  16. Schillaci O, Filippi L, Manni C, Santoni R. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med. 2007;37(1):34-47. [Crossref]  [PubMed]
  17. Kuwert T, Woesler b, Morgenroth C, Lerch H, Schäfers M, Palkovic S, et al. Diagnosis of recurrent glioma with SPECT and iodine-123- alpha-methyl tyrosine. J Nucl Med. 1998;39(1):23-7.
  18. Bader Jb, Samnick S, Moringlane JR, Feiden W, Schaefer A, Kremp S, et al. Evaluation of L3-[123I]iodo-α-methyltyrosine SPET and [18F]fluorodeoxyglucose PET in the detection and grading of recurrences in patients pretreated for gliomas at follow-up: a comparative study with stereotactic biopsy. Eur J Nucl Med. 1999;26(2):144-51. [Crossref]  [PubMed]
  19. WD Kaplan, T. Takvorian JH, Morris Rumbaugh CL, Connoly bT, Atkins HL. Thallium201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med. 1987;28(1):47-52.
  20. Abdel-Dayem HM, Scott AA, Macapinlac H. Thallium-201 chloride: a tumor imaging agent. In: Murray IPC, Ell PJ, eds. Nuclear Medicine in Clinical Diagnosis and Treatment. 2nd ed. Edinburgh: Churchill Livingstone; 1998. p.831- 41.
  21. Waxman AD. Thallium-201 in nuclear oncology. In: Freeman LM, ed. Nuclear Medicine Annual. New York: Raven Press; 1991. p.193- 209.
  22. Ede H, Karacavus S, Erbay AR. Application of myocardial perfusion scintigraphy and its use in cardiology. bozok Med J. 2015;5(1):59-65.
  23. Sasaki M, Kuwabara Y, Yoshida T. A comparative study of thallium-201 SPECT, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med. 1998;31(2):93-102. [Crossref]  [PubMed]  [PMC]
  24. Schwartz Rb, Holman bL, Polak JF, Garada bM, Schwartz MS, Folkerth R, et al. Dual-isotope single-photon emission computerized tomography scanning in patients with glioblastoma multiforme: association with patient survival and histopathological characteristics of tumor after high-dose radiotherapy. J Neurosurg. 1998;89(1):60-8. [Crossref]  [PubMed]
  25. Schwartz Rb, Carvalho PA, Alexander E, Loeffler JS, Folkerth R, Holman bL. Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201TI and 99mTc-HMPAO. AJNR Am J Neuroradiol. 1991;12(6):1187-92.
  26. Yeh R, Miloushev vZ, Ichise M. Chapter 33- positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging. In: Newton Hb, ed. Handbook of Neuro-Oncology Neuroimaging. 2nd ed. Academic Press; 2016. p.359-70. [Crossref]
  27. Suess E, Malessa S, Ungersbock K, Kitz P, Podreka I, Heimberger K, et al. Technetium99m-d, 1-hexamethyipropyleneamine Oxime (HMPAO) uptake and glutathione content in brain tumors. J Nucl Med. 1991;32(9):1675- 81.
  28. Oshima M, Konoeda K, Karigome M, Yoshida K, Sasaki Y, Kikuchi Y, et al. Evaluation of 99mTc-ECD SPECT for the detection of brain tumor: comparison with 201TI SPECT. Nippon Acta Radiologica. 1997;57(1):52-7.
  29. Fotopoulos AD, Kyritsis AP, Tsiouris S, Alboucharali J, Papadopoulos A, voulgaris S, et al. Characterization of intracranial space-occupying lesions by 99mTc-Tetrofosmin SPECT. J Neurooncol. 2011;101(1):83-9. [Crossref]  [PubMed]
  30. Alexiou GA, Tsiouris S, Kyritsis AP, Fotakopoulos G, Goussia A, voulgaris S, et al. The value of 99mTc-Tetrofosmin brain SPECT in predicting survival in patients with glioblastoma multiforme. J Nucl Med. 2010;51(12):1923-6. [Crossref]  [PubMed]
  31. Lee JD, Kim DI, Lee JT, Chang JW, Park CY. Indium-111-pentetreotide imaging in intra-axial brain tumors: Comparison with thallium-201 SPECT and MRI. J Nucl Med. 1995;36(4):537- 41.
  32. Dutour A, Kumar U, Panetta R, Ouafik L, Fina F, Sasi R, et al. Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer. 1998;76(5):620-7. [Crossref]
  33. Gambhir S. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2(9):683-93. [Crossref]  [PubMed]
  34. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41(4):661-81.
  35. Spence AM, Muzi M, Graham MM, O'Sullivan F, Krohn KA, Link JM. et al. Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. J Nucl Med. 1998;39(3):440-8.
  36. Di Chiro G. Positron emission tomography using 18F-fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol. 1987;22(5):360-71. [Crossref]  [PubMed]
  37. verger A, Lange KJ. PET imaging in glioblastoma: use in clinical practice. In: vleeschouwer SDe, ed. Glioblastoma. brisbane (AU): Codon Publications; 2017. p.155- 74. [Crossref]
  38. Fink JR, Muzi M, Peck M, Krohn KA. Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J Nucl Med. 2015;56(10):1554-61. [Crossref]  [PubMed]  [PMC]
  39. Langleben DD, Segall GM. PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med. 2000;41(11):1861-7.
  40. Galldiks N, Langen KJ. Amino acid PET - an imaging option to identify treatment response, post therapeutic effects, and tumor recurrence. Front Neurol. 2016;7:120. [Crossref]  [PubMed]  [PMC]
  41. Chen W. Clinical applications of PET in brain tumors. J Nucl Med Off Publ Soc Nucl Med. 2007;48(9):1468-81. [Crossref]  [PubMed]
  42. Jager PL, vaalburg W, Pruim J, vries EGE de, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in Oncology. J Nucl Med. 2001;42(3):432-45.
  43. Miyagawa T, Oku T, Uehara H, Desai R, beattie b, Tjuvajev J, et al.'Facilitated' amino acid transport is upregulated in brain tumors. J Cereb blood Flow Metab Off J Int Soc Cereb blood Flow Metab. 1998;18(5):500-9. [Crossref]  [PubMed]
  44. Salanci bv. Molecular imaging in intracranial tumors. Trd Sem. 2016;4(1):59-71. [Crossref]
  45. De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg. 2001;95(5):746-50. [Crossref]  [PubMed]
  46. Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34(5):944-50. [Crossref]  [PubMed]  [PMC]
  47. Grosu AL, Astner ST, Riedel E, Nieder C, Wiedenmann N, Heinemann F, et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol biol Phys. 2011;81(4):1049-58. [Crossref]  [PubMed]
  48. Jansen NL, Suchorska b, Wenter v, SchmidTannwald C, Todica A, Eigenbrod S, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med Off Publ Soc Nucl Med. 2015;56(1):9-15. [Crossref]  [PubMed]
  49. Bell C, Dowson N, Puttick S, Gal Y, Thomas P, Fay M, et al. Increasing feasibility and utility of 18F-FDOPA PET for the management of glioma. Nucl Med biol. 2015;42(10):788- 95. [Crossref]  [PubMed]
  50. Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: Comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47(6):904- 11.
  51. Zhao F, Cui Y, Li M, Fu Z, Chen Z, Kong L, et al. Prognostic value of 3'-deoxy-3'-18F-fluorothymidine ([(18)F] FLT PET) in patients with recurrent malignant gliomas. Nucl Med biol. 2014;41(8):710-5. [Crossref]  [PubMed]
  52. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med Off Publ Soc Nucl Med. 2005;46(6):945-52.
  53. Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med Off Publ Soc Nucl Med. 2005;46(12):1948-58.
  54. Szeto MD, Chakraborty G, Hadley J, Rockne R, Muzi M, Alvord EC, et al. Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res. 2009;69(10):4502-9. [Crossref]  [PubMed]  [PMC]
  55. belloli S, brioschi A, Politi LS, Ronchetti F, Calderoni S, Raccagni I, et al. Characterization of biological features of a rat F98 GbM model: a PET-MRI study with [18F]FAZA and [18F]FDG. Nucl Med biol. 2013;40(6):831-40. [Crossref]  [PubMed]
  56. Yamamoto Y, Maeda Y, Kawai N, Kudomi N, Aga F, Ono Y, et al. Hypoxia assessed by 18Ffluoromisonidazole positron emission tomography in newly diagnosed gliomas. Nucl Med Commun. 2012;33(6):621-5. [Crossref]  [PubMed]
  57. Postema EJ, McEwan AJb, Riauka TA, Kumar P, Richmond DA, Abrams DN, et al. Initial results of hypoxia imaging using 1-α-D-(5- deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroi midazole (18F-FAZA). Eur J Nucl Med Mol Imaging. 2009;36(10):1565-73. [Crossref]  [PubMed]
  58. Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl11C]choline. Journal of Nuclear Medicine. 1997;38(6):842-7.
  59. Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T, et al. brain tumour imaging with carbon-11 choline: Comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med. 2001;28(11):1664-70. [Crossref]  [PubMed]
  60. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H. et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positronemission tomography. AJNR Am J Neuroradiol. 2008;29(6):1176-82. [Crossref]  [PubMed]  [PMC]
  61. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. biodistribution and pharmacokinetics of the v3-selective tracer 18F-Galacto-RGD in cancer patients. J Nucl Med. 2005;46(8):1333-41.
  62. Haubner R, Kuhnast b, Mang C, Weber WA, Kessler H, Wester HJ, et al. [18F]GalactoRGD: synthesis, radiolabelling, metabolic stability and radiation dose estimates. bioconjug Chem. 2004;15(1):61-9. [Crossref]  [PubMed]
  63. Schnell O, Krebs b, Carlsen J, Miederer I, Goetz C, Goldbrunner RH. Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro-Oncology. 2009;11(6):861-70. [Crossref]  [PubMed]  [PMC]
  64. Testanera G, Pepe G. Imaging in oncological brain diseases: PET/CT In: Fragoso CP, Santos A, vidovič b, eds. brain Imaging. 1st ed. vienna: European Association of Nuclear Medicine; 2015. p.33-53.
  65. Waitz D, Putzer D, Kostron H, virgolini IJ. Treatment of high-grade glioma with radiolabeled peptides. Methods. 2011;55(3):223-9. [Crossref]  [PubMed]
  66. Kiviniemi A, Gardberg M, Frantzén J, Pesola M, vuorinen v, Parkkola R. Somatostatin receptor subtype 2 in high-grade gliomas: PET/CT with 68Ga-DOTA peptides, correlation to prognostic markers, and implications for targeted radiotherapy. EJNMMI Research. 2015;5:25. [Crossref]  [PubMed]  [PMC]
  67. La Fougère C, Suchorska b, bartenstein P, Kreth FW, Tonn JC. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro-Oncology. 2011;13(8):806-19. [Crossref]  [PubMed]  [PMC]
  68. Ecevit H, Motor S, Izmirli M. New approaches from gene to therapies: non-coding nucleic acids. Mustafa Kemal Üniv Tıp Derg. 2013;13(4):27-36.
  69. Tekintaş Y, Demir-Dora D, Hoşgör-Limoncu M. Antisense oligonucleotids and antibacterial use. Türk Mikrobiyol Cemiy Derg. 2016;46(2):51-7. [Crossref]
  70. Ray A, Nordén b. Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEb J. 2000;14(9):1041-60. [Crossref]  [PubMed]
  71. Iyer AK, He J. Radiolabeled oligonucleotides for antisense imaging. Curr Org Synth. 2011;8(4):604-14. [Crossref]  [PubMed]  [PMC]
  72. Reddy PD, Swarnalatha D. Recent advances in novel drug delivery systems. IJPTR. 2010;2(3):2025-27.
  73. Silindir-Gunay M. Glioma imaging and novel agents. In: Rahman A, Amtul Z, eds. Frontiers in Clinical Drug Research-CNS and Neurological Disorders. Singapore; 2020. p.109-54. [Crossref]
  74. vural G, Özer AY. Drug delivery systems and theranostic use in nuclear medicine. Nuclear Medicine Seminars. 2015;2(1):109-19. [Crossref]
  75. Daemen T, Hofstede G, Ten Kate MT, bakkerWoudenberg IA, Scherphof GL. Liposomal doxorubicin induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer. 1995;29(61):716- 21 [Crossref]  [PubMed]