Rare Metabolic Myopathies

cocukmetabolizma-5-1-2024

Suzan İCİLa , Asburçe OLGAÇa

aAnkara Etlik City Hospital, Clinic of Pediatric Metabolism Diseases, Ankara, Türkiye

ABSTRACT
Metabolic myopathies are a series of rare congenital metabolic diseases that lead to impaired energy production. They can present with hypotonia, hypoglycemia, and encephalopathy during the neonatal and infantile period as part of multisystemic involvement, or adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. Genetic causes of metabolic myopathies include mitochondrial fatty acid β-oxidation disorders, LPIN1 mutations, congenital glycogenolysis and glycolysis defects (ALDO A deficiency), and rarely mitochondrial respiratory chain disorders, peroxisomal α-methyl-acyl-CoA racemase (AMACR) deficiency, RYR1 gene mutations and Brody myopathy. Clinical findings can occur during short periods of high-intensity exercise, or catabolic situations including fasting, surgery, fever, and infections. Neurologic examination is usually inconclusive between acute events. Diagnostic methods include exercise stress testing, laboratory analyses, muscle biopsy (e.g. histology, ultrastructure, enzyme testing), and targeted (specific gene) or non-targeted (myopathy panels) genetic testing. Clinical symptoms can reduced by changing diet and lifestyle habits.
Keywords: Rare metabolic myopathies; creatine kinase; rhabdomyolysis

Referanslar

  1. Kukita A, Yoshida MC, Fukushige S, Sakakibara M, Joh K, Mukai T, et al. Molecular gene mapping of human aldolase A (ALDOA) gene to chromosome 16. Hum Genet. 1987;76(1):20-6. [Crossref]  [PubMed]
  2. Tolan DR, Niclas J, Bruce BD, Lebo RV. Evolutionary implications of the human aldolase-A, -B, -C, and -pseudogene chromosome locations. Am J Hum Genet. 1987;41(5):907-24.
  3. Lebherz HG, Rutter WJ. Distribution of fructose diphosphate aldolase variants in biological systems. Biochemistry. 1969;8(1):109-21. [Crossref]  [PubMed]
  4. Buono P, D'Armiento FP, Terzi G, Alfieri A, Salvatore F. Differential distribution of aldolase A and C in the human central nervous system. J Neurocytol. 2001;30(12):957-65. [Crossref]  [PubMed]
  5. Beutler E, Scott S, Bishop A, Margolis N, Matsumoto F, Kuhl W. Red cell aldolase deficiency and hemolytic anemia: a new syndrome. Trans Assoc Am Physicians. 1973;86:154-66.
  6. Miwa S, Fujii H, Tani K, Takahashi K, Takegawa S, Fujinami N, et al. Two cases of red cell aldolase deficiency associated with hereditary hemolytic anemia in a Japanese family. Am J Hematol. 1981;11(4):425-37. [Crossref]  [PubMed]
  7. Kishi H, Mukai T, Hirono A, Fujii H, Miwa S, Hori K. Human aldolase A deficiency associated with a hemolytic anemia: thermolabile aldolase due to a single base mutation. Proc Natl Acad Sci U S A. 1987;84(23):8623-7 [Crossref]  [PubMed]  [PMC]
  8. Kreuder J, Borkhardt A, Repp R, Pekrun A, Göttsche B, Gottschalk U, et al. Brief report: inherited metabolic myopathy and hemolysis due to a mutation in aldolase A. N Engl J Med. 1996;334(17):1100-4. [Crossref]  [PubMed]
  9. Yao DC, Tolan DR, Murray MF, Harris DJ, Darras BT, Geva A, et al. Hemolytic anemia and severe rhabdomyolysis caused by compound heterozygous mutations of the gene for erythrocyte/muscle isozyme of aldolase, ALDOA(Arg303X/Cys338Tyr). Blood. 2004;103(6):2401-3. [Crossref]  [PubMed]
  10. [10] Mamoune A, Bahuau M, Hamel Y, Serre V, Pelosi M, Habarou F,et al. A thermolabile aldolase A mutant causes fever-induced recurrent rhabdomyolysis without hemolytic anemia. PLoS Genet. 2014;10(11):e1004711. [Crossref]  [PubMed]  [PMC]
  11. Institute of Medicine (US) Committee on Military Nutrition Research. Nutritional Needs in Hot Environments: Applications for Military Personnel in Field Operations. Marriott BM, editor. Washington (DC): National Academies Press (US); 1993.
  12. Pedersen BK. Special feature for the Olympics: effects of exercise on the immune system: exercise and cytokines. Immunol Cell Biol. 2000;78(5):532-5. [Crossref]  [PubMed]
  13. Papadopoulos C, Svingou M, Kekou K, Vergnaud S, Xirou S, Niotakis G, et al. Aldolase A deficiency: Report of new cases and literature review. Mol Genet Metab Rep. 2021;27:100730. [Crossref]  [PubMed]  [PMC]
  14. Hamel Y, Mamoune A, Mauvais FX, Habarou F, Lallement L, Romero NB, et al. Acute rhabdomyolysis and inflammation. J Inherit Metab Dis. 2015; 38(4):621-8. [Crossref]  [PubMed]
  15. Paoli A, Bianco A, Damiani E, Bosco G. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014;2014:474296. [Crossref]  [PubMed]  [PMC]
  16. Santoro L, Pjetraj D, Velmishi V, Campana C, Catassi C, Dionisi-Vici C, et al. A new phenotype of aldolase a deficiency in a 14 year-old boy with epilepsy and rhabdomyolysis - case report. Ital J Pediatr. 2022;48(1):39. [Crossref]  [PubMed]  [PMC]
  17. Reue K. The lipin family: mutations and metabolism. Curr Opin Lipidol. 2009; 20(3):165-70. [Crossref]  [PubMed]  [PMC]
  18. Han GS, Carman GM. Characterization of the human LPIN1-encoded phosphatidate phosphatase isoforms. J Biol Chem. 2010;285(19):14628-38. [Crossref]  [PubMed]  [PMC]
  19. Kural B, Alver A, Canpolat S, Kahraman C, Altay D, Kara H, et al. The effects of high fat diets with and without N-acetylcysteine supplementation on the lipin1 levels of serum and various tissues in rats. Turk J Biochem. 2014;39:19-24. [Crossref]
  20. Hamel Y, Mauvais FX, Madrange M, Renard P, Lebreton C, Nemazanyy I, et al. Compromised mitochondrial quality control triggers lipin1-related rhabdomyolysis. Cell Rep Med. 2021;2(8):100370. [Crossref]  [PubMed]  [PMC]
  21. Zeharia A, Shaag A, Houtkooper RH, Hindi T, de Lonlay P, Erez G, et al.Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood. Am J Hum Genet. 2008 Oct;83(4):489-94. Erratum in: Am J Hum Genet. 2009;84(1):95. [Crossref]  [PubMed]  [PMC]
  22. Meijer IA, Sasarman F, Maftei C, Rossignol E, Vanasse M, Major P, et al. LPIN1 deficiency with severe recurrent rhabdomyolysis and persistent elevation of creatine kinase levels due to chromosome 2 maternal isodisomy. Mol Genet Metab Rep. 2015;5:85-8. [Crossref]  [PubMed]  [PMC]
  23. Tong K, Yu GS. Acute recurrent rhabdomyolysis in a Chinese boy associated with a novel compound heterozygous LPIN1 variant: a case report. BMC Neurol. 2021;21(1):42. [Crossref]  [PubMed]  [PMC]
  24. Kanderi N, Kirmse B, Regier DS, Chapman KA. LPIN1 rhabdomyolysis: A single site cohort description and treatment recommendations. Mol Genet Metab Rep. 2022;30:100844. [Crossref]  [PubMed]  [PMC]
  25. Pizzamiglio C, Lahiri N, Nirmalananthan N, Sood B, Somalanka S, Ostrowski P, et al. First presentation of LPIN1 acute rhabdomyolysis in adolescence and adulthood. Neuromuscul Disord. 2020;30(7):566-71. [Crossref]  [PubMed]
  26. Kahraman AB, Karakaya B, Yıldız Y, Kamaci S, Kesici S, Simsek-Kiper PO, et al. Two tales of LPIN1 deficiency: from fatal rhabdomyolysis to favorable outcome of acute compartment syndrome. Neuromuscul Disord. 2022;32(11-12):931-4. [Crossref]  [PubMed]
  27. Long B, Koyfman A, Gottlieb M. Evaluation and Management of Acute Compartment Syndrome in the Emergency Department. J Emerg Med. 2019;56(4): 386-97. [Crossref]  [PubMed]
  28. von Keudell AG, Weaver MJ, Appleton PT, Bae DS, Dyer GSM, Heng M, et al. Diagnosis and treatment of acute extremity compartment syndrome. Lancet. 2015;386(10000):1299-310. Erratum in: Lancet. 2015;386(10006): 1824. Appelton, Paul T [corrected to Appleton, Paul T]. Erratum in: Lancet. 2015;386(10006):1824. [Crossref]  [PubMed]
  29. Szugye HS. Pediatric Rhabdomyolysis. Pediatr Rev. 2020;41(6):265-75. [Crossref]  [PubMed]  [PMC]
  30. Yeganeh M, March K, Jones C, Ho G, Selby KA, Chanoine JP, et al. Use of dexamethasone in acute rhabdomyolysis in LPIN1 deficiency. Mol Genet Metab Rep. 2023;35:100961. [Crossref]  [PubMed]  [PMC]
  31. Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature. 1996;380(6569):72-5. [Crossref]  [PubMed]  [PMC]
  32. Gehlert S, Bloch W, Suhr F. Ca2+-dependent regulations and signaling in skeletal muscle: from electro-mechanical coupling to adaptation. Int J Mol Sci. 2015;16(1):1066-95. [Crossref]  [PubMed]  [PMC]
  33. Zhou H, Rokach O, Feng L, Munteanu I, Mamchaoui K, Wilmshurst JM, et al. RyR1 deficiency in congenital myopathies disrupts excitation-contraction coupling. Hum Mutat. 2013;34(7):986-96. [Crossref]  [PubMed]
  34. Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, et al. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol. 2018;265(11):2506-24. [Crossref]  [PubMed]  [PMC]
  35. Alkhunaizi E, Shuster S, Shannon P, Siu VM, Darilek S, Mohila CA, et al. Homozygous/compound heterozygote RYR1 gene variants: Expanding the clinical spectrum. Am J Med Genet A. 2019;179(3):386-96. [Crossref]  [PubMed]
  36. Lawal TA, Todd JJ, Witherspoon JW, Bönnemann CG, Dowling JJ, Hamilton SL, et al. Ryanodine receptor 1-related disorders: an historical perspective and proposal for a unified nomenclature. Skelet Muscle. 2020;10(1):32. [Crossref]  [PubMed]  [PMC]
  37. Shillington A, Zea Vera A, Perry T, Hopkin R, Thomas C, Cooper D, et al. Clinical RNA sequencing confirms compound heterozygous intronic variants in RYR1 in a patient with congenital myopathy, respiratory failure, neonatal brain hemorrhage, and d-transposition of the great arteries. Mol Genet Genomic Med. 2021;9(10):e1804. [Crossref]  [PubMed]  [PMC]
  38. Clarke NF, Waddell LB, Cooper ST, Perry M, Smith RL, Kornberg AJ, et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat. 2010;31(7):E1544-50. [Crossref]  [PubMed]
  39. Kruijt N, den Bersselaar LV, Snoeck M, Kramers K, Riazi S, Bongers C, et al. RYR1-Related Rhabdomyolysis: A Spectrum of Hypermetabolic States Due to Ryanodine Receptor Dysfunction. Curr Pharm Des. 2022;28(1):2-14. [Crossref]  [PubMed]
  40. Miyazaki N, Kobayashi T, Komiya T, Okada T, Ishida Y, Fukui H, et al. Postoperative malignant hyperthermia confirmed by calcium-induced calcium release rate after breast cancer surgery, in which prompt recognition and immediate dantrolene administration were life-saving: a case report. J Med Case Rep. 2021;15(1):201. [Crossref]  [PubMed]  [PMC]
  41. Verhoeven NM, Jakobs C. Human metabolism of phytanic acid and pristanic acid. Prog Lipid Res. 2001;40(6):453-66. [Crossref]  [PubMed]
  42. Gündüz M, Ünal Ö, Küçükçongar-Yavaş A, Kasapkara Ç. Alpha methyl acyl CoA racemase deficiency: Diagnosis with isolated elevated liver enzymes. Turk J Pediatr. 2019;61(2):289-91. [Crossref]  [PubMed]
  43. Ferdinandusse S, Denis S, Clayton PT, Graham A, Rees JE, Allen JT, et al. Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet. 2000;24(2):188-91. [Crossref]  [PubMed]
  44. Clarke CE, Alger S, Preece MA, Burdon MA, Chavda S, Denis S, et al. Tremor and deep white matter changes in alpha-methylacyl-CoA racemase deficiency. Neurology. 2004;63(1):188-9. [Crossref]  [PubMed]
  45. Thompson SA, Calvin J, Hogg S, Ferdinandusse S, Wanders RJ, Barker RA. Relapsing encephalopathy in a patient with alpha-methylacyl-CoA racemase deficiency. J Neurol Neurosurg Psychiatry. 2008;79(4):448-50.. [Crossref]  [PubMed]
  46. Dick D, Horvath R, Chinnery PF. AMACR mutations cause late-onset autosomal recessive cerebellar ataxia. Neurology. 20117;76(20):1768-70. [Crossref]  [PubMed]  [PMC]
  47. Wanders RJA, Aubourg P, Poll-The BT. Inborn errors of non-mitochondrial fatty acid metabolism including peroxisomal disorders. In: Saudubray JM, Baumgartner MR, Walter JH, eds. Inborn Metabolic Diseases. 6th ed. Berlin, Heidelberg: Springer; 2016. p. 597-8. [Crossref]
  48. Van Veldhoven PP, Meyhi E, Squires RH, Fransen M, Fournier B, Brys V, et al. Fibroblast studies documenting a case of peroxisomal 2-methylacyl-CoA racemase deficiency: possible link between racemase deficiency and malabsorption and vitamin K deficiency. Eur J Clin Invest. 2001;31(8):714-22. [Crossref]  [PubMed]
  49. Setchell KD, Heubi JE, Bove KE, O'Connell NC, Brewsaugh T, Steinberg SJ, et al. Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology. 2003;124(1):217-32. [Crossref]  [PubMed]
  50. Ueki I, Kimura A, Nishiyori A, Chen HL, Takei H, Nittono H, et al. Neonatal cholestatic liver disease in an Asian patient with a homozygous mutation in the oxysterol 7alpha-hydroxylase gene. J Pediatr Gastroenterol Nutr. 2008;46(4):465-9. [Crossref]  [PubMed]
  51. Brody IA. Muscle contracture induced by exercise. A syndrome attributable to decreased relaxing factor. N Engl J Med. 1969;281(4):187-92. [Crossref]  [PubMed]
  52. Novelli A, Valente EM, Bernardini L, Ceccarini C, Sinibaldi L, Caputo V, et al. Autosomal dominant Brody disease cosegregates with a chromosomal (2;7)(p11.2;p12.1) translocation in an Italian family. Eur J Hum Genet. 2004;12(7):579-83. [Crossref]  [PubMed]
  53. Godfrey R, Quinlivan R. Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol. 2016;12(7):393-402. [Crossref]  [PubMed]
  54. Molenaar JP, Verhoeven JI, Rodenburg RJ, Kamsteeg EJ, Erasmus CE, Vicart S, et al. Clinical, morphological and genetic characterization of Brody disease: an international study of 40 patients. Brain. 2020;143(2):452-66. [Crossref]  [PubMed]  [PMC]