Recent Advances in Cardiac Computed Tomography Technology

Serkan ARIBALa , Tanju KİSBETa , Eyüp KAYAb

aProf. Dr. Cemil Taşcıoğlu City Hospital, Clinic of Radiology, İstanbul, Türkiye
bBatman Training and Research Hospital, Clinic of Radiology, Batman, Türkiye

Arıbal S, Kisbet T, Kaya E. Recent advances in cardiac computed tomography technology. In: Bayraktaroğlu S, ed. Advances in Cardiovascular System Imaging. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.1-6.

ABSTRACT
Cardiac Computed Tomography (CCT) has become an important and useful imaging method used in the non-invasive diagnosis of cardiovascular diseases with the introduction of multislice CT technology, Over time, it has been accepted as the first line imaging method in the evaluation of coronary arteries, especially in cases with low and moderate risk of cardiovascular diseases. Although it was not used early on except for anatomy-based evaluations, technological advances in cardiac CT over the past two decades have resulted in a robust clinical tool that provides accurate atherosclerotic coronary plaque and stenosis assessment with determining the functional significance of the stenosis and prognostic utility in cardiovascular disease. Finally, recent advances in CT detector technology provide higher spatial and contrast resolution with multiple-energy x-ray photon analysis, known as photon-counting CT. In this review, it is aimed to explore the latest and the recent CT applications and advances in cardiac imaging.

Keywords: Computed tomography angiography; myocardial perfusion imaging; coronary artery disease

Referanslar

  1. Ritman EL. Cardiac computed tomography imaging: a history and some future possibilities. Cardiol Clin. 2003;21(4):491-513. [Crossref]
  2. Narula J, Chandrashekhar Y, Ahmadi A, Villines TC, Williams M, Hecht HS, et al. SCCT 2021 Expert Consensus Document on Coronary Computed Tomographic Angiography: A Report of the Society of Cardiovascular Computed Tomography. Journal of Cardiovascular Computed Tomography. 2021;15(3):192-217. [Crossref]
  3. Dodd JD, Leipsic JA. Evolving Developments in Cardiac CT. Radiology. 2023;307(3):e222827. [Crossref]
  4. Motoyoma S, Ito H, Sarai M, Kondo T, Kawai H, Nagahara Y, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up J Am Coll Cardiol. 2015;66:337-46. [Crossref]
  5. Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, et al. CAD-RADS™ 2.0-2022 Coronary Artery Disease-Reporting and Data System. An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). Radiol Cardiothorac Imaging. 2022;4(5):e220183. [Crossref]
  6. Curzen N, Nicholas Z, Stuart B, Wilding S, Hill K, Shambrook J, et al. Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial. Eur Heart J. 2021;42(37):3844-52. [Crossref]
  7. Nous FMA, Geisler T, Kruk MBP, Alkadhi H, Kitagawa K, Vliegenthart R, et al. Dynamic Myocardial Perfusion CT for the Detection of Hemodynamically Significant Coronary Artery Disease. JACC Cardiovasc Imaging. 2022;15(1):75-87. [Crossref]
  8. Kara K, Sivrioğlu AK, Öztürk E, Incedayı M, Sağlam M, Arıbal S, et al. The role of coronary CT angiography in diagnosis of patent foramen ovale. Diagn Interv Radiol. 2016;22(4):341-6. [Crossref]
  9. Oda S, Emoto T, Nakaura T, Kidoh M, Utsunomiya D, Funama Y, et al. Myocardial Late Iodine Enhancement and Extracellular Volume Quantification with Dual-Layer Spectral Detector Dual-Energy Cardiac CT. Radiol Cardiothorac Imaging. 2019;1(1):e180003. [Crossref]
  10. McVeigh RE, Pourmorteza A, Guttman M, Sandfort V, Contijoch F, Budhiraja S, et al. Regional myocardial strain measurements from 4DCT in patients with normal LV function. J Cardiovasc Comput Tomogr. 2018;12(5):372-8. [Crossref]
  11. Cundari G, Galea N, Mergen V, Alkadhi H, Eberhard M. Myocardial extracellular volume quantification with computed tomography-current status and future outlook. Insights Imaging. 2023;14:156. [Crossref]
  12. Hsieh SS, Leng S, Rajendran K, Tao S, McCollough CH. Photon Counting CT: Clinical Applications and Future Developments. IEEE Trans Radiat Plasma Med Sci. 2021;5(4):441-52. [Crossref]
  13. Pflederer T, Marwan M, Renz A, Bachmann S, Ropers D, Kuettner A, et al. Noninvasive assesment of coronary in-stent restenosis by dual-source computed tomography. Am J Cardiol. 2009;103:812-7. [Crossref]
  14. Pugliese F, Weustink AC, Van Mieghem C, Alberghina F, Otsuka M, Meijboom WB, et al. Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart. 2008;94:848-54. [Crossref]
  15. Di Carli MF, Dorbala S, Curillova Z, Kwong RJ, Goldhaber SZ, Rybicki FJ, et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol. 2007;14:799-809. [Crossref]
  16. Gaemperli O, Hussman L, Schepis T, Koepfli P, Valenta I, Jenni W, et al. Coronary CT angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization? Eur Heart J. 2009;30:2921-9. [Crossref]
  17. Branch KR, Haley RD, Bittencourt MS, Patel AR, Hulten E, Blankstein R. Myocardial computed tomography perfusion. Cardiovasc Diagn Ther. 2017;7(5):452-62. [Crossref]
  18. Aribal S. An insidious coronary arterial pathology diagnosed with an adenosine stress computed tomography perfusion study. Br J Hosp Med (Lond). 2020;81(7):1. [Crossref]
  19. Wang J, Chen HW, Fang XM, Qian PY, Ding GL, Xu ML. Myocardial CT perfusion imaging and atherosclerotic plaque characteristics on coronary CT angiography for the identification of myocardial ischaemia. Clin Radiol. 2019;74(10):763-8. [Crossref]
  20. Elgendy IY, Conti CR, Bavry AA. Fractional flow reserve: an updated review. Clin Cardiol. 2014;37(6):371-80. [Crossref]
  21. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol. 2010;55:173-85. [Crossref]
  22. Zhuang B, Wang S, Zhao S, Lu M. Computed tomography angiography-derived fractional flow reserve (CT-FFR) for the detection of myocardial ischemia with invasive fractional flow reserve as reference: systematic review and meta-analysis. Eur Radiol. 2020;30(2):712-25. [Crossref]
  23. Coenen A, Kim YH, Kruk M, Tesche C, Geer JD, Kurata A, et al. Diagnostic Accuracy of a Machine- Learning Approach to Coronary Computed Tomographic Angiography- Based Fractional Flow Reserve: Result From the MACHINE Consortium. Circ Cardiovasc Imaging. 2018;11(6):e007217. [Crossref]
  24. Strisciuglio T, Barbato E. The Fractional Flow Reserve Gray Zone Has Never Been So Narrow. J Thorac Dis. 2016;8(11):E1537-9. [Crossref]
  25. Tesche C, De Cecco CN, Albrecht MH, Duguay TM, Bayer RR, Litwin SE, et al. Coronary CT Angiography-Derived Fractional Flow Reserve. Radiology. 2017;285(1):17-33. [Crossref]
  26. Tonino P, De Bruyne B, Pijls N, Siebert U, Ikeno F, Veer MV, et al. Fractional Flow Reserve Versus Angiography for Guiding Percutaneous Coronary Intervention. N Engl J Med. 2009;360(3):213-24. [Crossref]
  27. Avrin DE, Macovski A, Zatz LE. Clinicalapplication of Comptonandphoto-electricreconstruction in computedtomography: preliminaryresults. Invest Radiol. 1978;13:217-22. [Crossref]
  28. Siegel MJ, Kaza RK, Bolus DN, Boll DT, Rofsky NM, De Cecco CN, et al. White Paper of theSociety of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1: Technology and Terminology. J Comput Assist Tomogr. 2016;40:841-5. [Crossref]
  29. Dell'Aversana S, Ascione R, De Giorgi M, De Lucia DR, Cuocolo R, Boccalatte M, et al. Dual-Energy CT of theHeart: A Review. J Imaging. 2022;8(9). [Crossref]
  30. Vliegenthart R, Pelgrim GJ, Ebersberger U, Rowe GW, Oudkerk M, Schoepf UJ. Dual-energy CT of the heart. AJR Am J Roentgenol. 2012;199(5 Suppl):S54-63. [Crossref]
  31. Kantarci M, Okur A. Kardiyak Bilgisayarlı Tomografi (BT)'de Buluşlar: Kesit Mücadelesi, Dual Enerji, MiyokardiyalPerfüzyon Spesifik Kontrast Maddeler. Trd Sem. 2013;1:165-74. [Crossref]
  32. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology. 2018;289(2):293-312. [Crossref]
  33. Rajendran K, Petersilka M, Henning A, Shanblatt ER, Schmidt B, Flohr TG, et al. First Clinical Photon-counting Detector CT System: Technical Evaluation. Radiology. 2022;303(1):130-8. [Crossref]
  34. Kwan AC, Pourmorteza A, Stutman D, Bluemke DA, Lima JAC. Next-Generation Hardware Advances in CT: Cardiac Applications. Radiology. 2021;298(1):3-17. [Crossref]
  35. Ahmed Z, Rajendran K, Gong H, McCollough C, Leng S. Quantitative assessment of motion effects in dual-source dual-energy CT and dual-source photon-counting detector CT. Proc SPIE Int Soc Opt Eng. 2022;12031. [Crossref]
  36. Symons R, De Bruecker Y, Roosen J, Van Camp L, Cork TE, Kappler S, et al. Quarter-millimeter spectral coronary stent imaging with photon-counting CT: Initial experience. J Cardiovasc Comput Tomogr. 2018;12(6):509-15. [Crossref]