Recent Developments in Smart Nanocarriers in Cancer Treatment

Büşra ÇETİN ERSENa,b, Esma SARIc , Gökcen BİRLİK DEMİRELa
aAnkara Hacı Bayram Veli University Polatlı Faculty of Arts and Sciences, Department of Chemistry, Ankara, Türkiye
bAnkara Hacı Bayram Veli University Institute of Graduate Programs, Department of Chemistry, Ankara, Türkiye
cYüksek İhtisas University Vocational School of Health Services, Medical Laboratory Techniques, Ankara, Türkiye

Çetin Ersen B, Sarı E, Birlik Demirel G. Recent developments in smart nanocarriers in cancer treatment. In: Yar Sağlam AS, ed. Innovative Approaches in Cancer Diagnosis and Treatment. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.89-94.

Makale Dili: EN

ABSTRACT
Cancer is defined by uncontrolled cell growth that affects approximately 11 million people worldwide each year. Recent studies showed that traditional treatment approaches are quite insufficient to suppress tumor growth. New approaches are tried to develop for cancer treatment because the traditional treatment approaches are quite insufficient to suppress tumor growth. In this sense, it is necessary to develop nanocarrier systems that can carry more than one cargo molecules such as multipledrug, gene, and biomarker. Thus, unlike traditional methods for more effective cancer treatment, incorporating both diagnostic and therapeutic functions into a single nanocarrier system has become the common topic of current studies. Hybrid nanoparticles, which can be called ”all-in-one” systems, have a significant potential to perform such multiple functions. Here, we focused on the current progress in the design of hybrid nanocarriers for combined therapy that can harvest the synergistic effects of different treatments on a single platform.

Keywords: Neoplasms, nanoparticle drug delivery system; hybrid nanoparticles, combined modality therapy, theranostic

Referanslar

  1. Dastidar DG, Ghosh D, Das A. Recent developments in nanocarriers for cancer chemotherapy. OpenNano, 100080 (2022). [Crossref]
  2. Bose R, Jayawant M, Raut R, Lakkakula J, Roy A, Alghamdi S, et al. Cyclodextrin nanoparticles in targeted cancer theranostics. Front Pharmacol. 2023;14:1218867. [Crossref]  [PubMed]  [PMC]
  3. Boyd D. Invasion and metastasis. Cancer Metastasis Rev. 1996;15(1):77-89. [Crossref]  [PubMed]
  4. Das S, Kundu M, Jena BC, Mandal M. Causes of cancer: physical, chemical, biological carcinogens, and viruses. in Biomaterials for 3D Tumor Modeling. Elsevier; 2020. p.607-41. [Crossref]  [PubMed]
  5. Karagianni A, Tsierkezos NG, Prato M, Terrones M, Kordatos KV. Application of carbon-based quantum dots in photodynamic therapy. Carbon. 2023;203: 273-310. [Crossref]
  6. Cavalcanti IDL, Soares JCS. Advances in Cancer Treatment: From Systemic Chemotherapy to Targeted Therapy. Springer Nature; 2021. [Crossref]
  7. Kenchegowda M, Rahamathulla M, Hani U, Begum MY, Guruswamy S, Osmani RAM, et al. Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. Molecules. 2021;27(1):146. [Crossref]  [PubMed]  [PMC]
  8. Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanomaterials (Basel). 2022;12(15):2672. [Crossref]  [PubMed]  [PMC]
  9. Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, et al. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta. 2023;258:124399. [Crossref]  [PubMed]
  10. Saleem J, Wang L, Chen C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater. 2018;7(20):e1800525. [Crossref]  [PubMed]
  11. Mishra N, Garg A, Upmanyu N. Therapeutic Nanocarriers in Cancer Treatment: Challenges and Future Perspective. Bentham Science Publishers; 2023. [Crossref]
  12. Kajani AA, Rafiee L, Javanmard SH, Dana N, Jandaghian S. Carbon dot incorporated mesoporous silica nanoparticles for targeted cancer therapy and fluorescence imaging. RSC Adv. 2023;13(14):9491-500. [Crossref]  [PubMed]  [PMC]
  13. Chang YH, Chiang WH, Ilhami FB, Tsai CY, Huang SY, Cheng CC. Water-soluble graphene quantum dot-based polymer nanoparticles with internal donor/acceptor heterojunctions for efficient and selective detection of cancer cells. J Colloid Interface Sci. 2023;637:389-98. [Crossref]  [PubMed]
  14. Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, et al. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci. 2023;321:103007. [Crossref]  [PubMed]
  15. Hirschbiegel CM, Zhang X, Huang R, Cicek YA, Fedeli S, Rotello VM. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv Drug Deliv Rev. 2023;195:114730. [Crossref]  [PubMed]  [PMC]
  16. Ischyropoulou M, Sabljo K, Schneider L, Niemeyer CM, Napp J, Feldmann C, et al. High-Load Gemcitabine Inorganic-Organic Hybrid Nanoparticles as an Image-Guided Tumor-Selective Drug-Delivery System to Treat Pancreatic Cancer. Adv Mater. 2023;35(46):e2305151. [Crossref]  [PubMed]
  17. Tian B, Liu S, Yu C, Liu S. A Metal‐Free Mesoporous Carbon Dots/Silica Hybrid Type I Photosensitizer with Enzyme‐Activity for Synergistic Treatment of Hypoxic Tumor. Advanced Functional Materials. 2023;33(25):2300818. [Crossref]
  18. Evans ER, Bugga P, Asthana V, Drezek R. Metallic Nanoparticles for Cancer Immunotherapy. Mater Today (Kidlington). 2018;21(6):673-85. [Crossref]  [PubMed]  [PMC]
  19. Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1(1):13-28. [Crossref]
  20. Chen Y, Yang J, Fu S, Wu J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine. 2020;15:9407-30. [Crossref]  [PubMed]  [PMC]
  21. Liu X, Zhang X, Zhu M, Lin G, Liu J, Zhou Z, et al. PEGylated Au@Pt Nanodendrites as Novel Theranostic Agents for Computed Tomography Imaging and Photothermal/Radiation Synergistic Therapy. ACS Appl Mater Interfaces. 2017;9(1):279-85. [Crossref]  [PubMed]
  22. Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, et al. A Nanomedicine Fabricated from Gold Nanoparticles-Decorated Metal-Organic Framework for Cascade Chemo/Chemodynamic Cancer Therapy. Adv Sci (Weinh). 2020;7(17):2001060. [Crossref]  [PubMed]  [PMC]
  23. Cheng D, Ji Y, Wang B, Wang Y, Tang Y, Fu Y, et al. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater. 2021;128:435-46. [Crossref]  [PubMed]
  24. Cetin Ersen B, Goncu B, Dag A, Birlik Demirel G. GLUT-Targeting Phototherapeutic Nanoparticles for Synergistic Triple Combination Cancer Therapy. ACS Appl Mater Interfaces. 2023. [Crossref]  [PubMed]
  25. Fan S, Zhang Y, Tan H, Xue C, He Y, Wei X, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383-99. [Crossref]  [PubMed]
  26. Xiao Z, You Y, Liu Y, He L, Zhang D, Cheng Q, et al. NIR-Triggered Blasting Nanovesicles for Targeted Multimodal Image-Guided Synergistic Cancer Photothermal and Chemotherapy. ACS Appl Mater Interfaces. 2021;13(30):35376-88. [Crossref]  [PubMed]
  27. Zhang L, Qin Y, Zhang Z, Fan F, Huang C, Lu L, et al. Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy. Acta Biomater. 2018;75:371-85. [Crossref]  [PubMed]
  28. Dag A, Cakilkaya E, Omurtag Ozgen PS, Atasoy S, Yigit Erdem G, Cetin B, et al. Phthalocyanine-Conjugated Glyconanoparticles for Chemo-photodynamic Combination Therapy. Biomacromolecules. 2021;22(4):1555-67. [Crossref]  [PubMed]
  29. Lu S, Li X, Zhang J, Peng C, Shen M, Shi X. Dendrimer-Stabilized Gold Nanoflowers Embedded with Ultrasmall Iron Oxide Nanoparticles for Multimode Imaging-Guided Combination Therapy of Tumors. Adv Sci (Weinh). 2018;5(12):1801612. [Crossref]  [PubMed]  [PMC]
  30. Pan D, Zheng X, Zhang Q, Li Z, Duan Z, Zheng W, et al. Dendronized-Polymer Disturbing Cells' Stress Protection by Targeting Metabolism Leads to Tumor Vulnerability. Adv Mater. 2020;32(14):e1907490. [Crossref]  [PubMed]
  31. Xiong Z, Wang Y, Zhu W, Ouyang Z, Zhu Y, Shen M, et al. A Dual-Responsive Platform Based on Antifouling Dendrimer-CuS Nanohybrids for Enhanced Tumor Delivery and Combination Therapy. Small Methods. 2021;5(6):e2100204. [Crossref]  [PubMed]