Respiratory Support of Extremely Low Gestational Age Newborns from Delivery Room to the Neonatal Intensive Care Unit

neonatoloji-4-4-2023

Burçin İŞCANa , Nuray DUMANb

aİzmir Tınaztepe University Faculty of Medicine, Department of Pediatrics, Division of Neonatology, İzmir, Türkiye
bDokuz Eylül University Faculty of Medicine, Department of Pediatrics Division of Neonatology, İzmir, Türkiye

ABSTRACT
While advances in the care of extremely preterm infants have led to increased survival rates, extremely low gestational age newborns (ELGANs) present new challenges in respiratory support, necessitating a specialized approach. The optimal strategy for aiding postnatal respiratory adaptation in ELGANs should not only facilitate successful adaptation but also prioritize the avoidance of lung injury. Early use of non-invasive ventilation (NIV) and less invasive surfactant administration (LISA) are recognized as the accepted approaches for preterm infants but most ELGANs require intubation and invasive mechanical ventilation due to their immature respiratory system. Given the limited availability of data and the complexity of trials involving ventilator management, there is currently no consensus on the best initial mechanical ventilation approach for extremely preterm infants. If invasive mechanical ventilation cannot be avoided, a lung-protective ventilation strategy should be implemented, and the duration of invasive mechanical ventilation should be shortened. In this review, we have also summarized some experiences from centers that have achieved the best outcomes for the most immature infants, as well as with limited evidence-based data.
Keywords: Respiratory support; extremely low gestational age neonates; ELGAN; preterm newborn; delivery room

Referanslar

  1. World Health Organization. Preterm birth factsheet. 2018. [Link]
  2. Amir I, Doyle LW, Davis P, et al. Disproportionate consumption of ventilator resources by very preterm survivors persists in the 1990s. Am J Perinatol. 1998;15(3):187-90. [Crossref]  [PubMed]
  3. Thebaud B. Angiogenesis and lung development. Neonatology. 2007;91:291-7. [Crossref]  [PubMed]
  4. Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314(10):1039-51. [Crossref]  [PubMed]  [PMC]
  5. Horbar JD, Edwards EM, Greenberg LT, et al. Variation in performance of neonatal intensive care units in the United States. JAMA Pediatr. 2017;171(3):e164396. [Crossref]  [PubMed]
  6. Sweet DG, Carnielli VP, Greisen G, Hallman M, Klebermass-Schrehof K, Ozek E, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology. 2023;120:3-23. [Crossref]  [PubMed]  [PMC]
  7. The most immature infants: Is evidence-based practice possible? Barrington KJ. Seminars in Perinatology. 2022;46(1). [Crossref]  [PubMed]
  8. Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3(3):CD004454. [Crossref]  [PubMed]  [PMC]
  9. Committee on Obstetric Practice. Committee Opinion No. 713: Antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol. 2017;130:102-9. [Crossref]  [PubMed]
  10. Carlo WA, McDonald SA, Fanaroff A, Vohr BR, Stoll BJ, Ehrenkranz RA. Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22 to 25 weeks' gestation. JAMA. 2011;306(21):2348-58. [Crossref]  [PubMed]  [PMC]
  11. Backes CH, Rivera BK, Pavlek L, Beer LJ, Ball MK. Proactive neonatal treatment at 22 weeks of gestation: a systematic review and meta-analysis. Am J Obstet Gynecol. 2021;224(2):158-74. [Crossref]  [PubMed]
  12. Cahill AG, Kaimal AJ, Kuller JA, Turrentine MA. ACOG Practice Advisory. Use of Antenatal Steroids at 22 weeks of gestation.
  13. Vento M, Cheung PY, Aguar M. The first golden minutes of the extremely-low-gestational-age neonate: a gentle approach. Neonatology. 2009;95(4):286-98. [Crossref]  [PubMed]
  14. Katheria A, Reister F, Essers J, Mendler M, Hummler H, Subramaniam A. Association of umbilical cord milking vs delayed umbilical cord clamping with death or severe intraventricular hemorrhage among preterm infants. JAMA. 2019;322(19):1877-86. [Crossref]  [PubMed]  [PMC]
  15. Knol R, Brouwer E, van den Akker T, DeKoninck P, van Geloven N, Polglase GR. Physiological-based cord clamping in very preterm infants randomized controlled trial on effectiveness of stabilization. Resuscitation. 2020;147(1):26-33. [Crossref]  [PubMed]
  16. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network; Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362(21):1970-9. [Crossref]  [PubMed]  [PMC]
  17. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358(7):700-8. [Crossref]  [PubMed]
  18. Dunn MS, Kaempf J, Klerk A, Klerk R, Reilly M, Howard D, et al. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics. 2011;128(5):1069. [Crossref]  [PubMed]
  19. Subramaniam P, Ho JJ, Davis PG. Prophylactic or very early initiation of continuous positive airway pressure (CPAP) for preterm infants. Cochrane Database Syst Rev. 2021;10(10):CD001243. [Crossref]  [PubMed]  [PMC]
  20. Wyckoff MH, Wyllie J, Aziz K, de Almeida MF, Fabres J, Fawke J. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2020;142:185-221. [Crossref]  [PubMed]
  21. Kanaan Z, Bloch-Queyrat C, Boubaya M, Lévy V, Bolot P, Waszak P. Feasibility of combining two individualized lung recruitment maneuvers at birth for very low gestational age infants: a retrospective cohort study. BMC Pediatr. 2020;20(1):144. [Crossref]  [PubMed]  [PMC]
  22. Positive End-Expiratory Pressure (PEEP) Levels during Resuscitation of Preterm Infants at Birth (The POLAR Trial). Clinical trials.gov: NCT04372953.
  23. Kirpalani H, Ratcliffe SJ, Keszler M, Davis PG, Foglia EE, Te Pas A, et al. Effect of sustained inflations vs intermittent positive pressure ventilation on monary dysplasia or death among extremely preterm infants: The SAIL randomized clinical trial. JAMA. 2019;321(12):1165-75. [Crossref]  [PubMed]  [PMC]
  24. Saugstad OD, Kapadia V, Oei JL. Oxygen in the first minutes of life in very preterm infants. Neonatology. 2021;118(2):218-24. [Crossref]  [PubMed]
  25. Biniwale M, Wertheimer F. Decrease in delivery room intubation rates after use of nasal intermittent positive pressure ventilation in the delivery room for resuscitation of very low birth weight infants. Resuscitation. 2017;116:33-8. [Crossref]  [PubMed]
  26. Shi Y, Muniraman H, Biniwale M, Ramanathan R. A Review on Non-invasive Respiratory Support for Management of Respiratory Distress in Extremely Preterm Infants. Front Pediatr. 2020;8:270. [Crossref]  [PubMed]  [PMC]
  27. Kuypers KLAM, Lamberska T, Martherus T, Dekker J, Böhringer S, Hooper SB, et al. The effect of a face mask for respiratory support on breathing in preterm infants at birth. Resuscitation. 2019;144:178-84. [Crossref]  [PubMed]
  28. Mangat A, Bruckner M, Schmölzer GM. Face mask versus nasal prong or nasopharyngeal tube for neonatal resuscitation in the delivery room: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2021;106(5): 561-7. [Crossref]  [PubMed]
  29. Norman M, Jonsson B, Wallström L, Sindelar R. Respiratory support of infants born at 22-24 weeks of gestational age. Semin Fetal Neonatal Med. 2022;27(2):101328. [Crossref]  [PubMed]
  30. Sindelar R, Nakanishi H, Stanford AH, Colaizy TT, Klein JM. Respiratory management for extremely premature infants born at 22 to 23 weeks of gestation in proactive centers in Sweden, Japan, and USA. Semin Perinatol. 2022;46(1):151540. [Crossref]  [PubMed]
  31. Polin RA, Carlo WA; Committee on Fetus and Newborn; American Academy of Pediatrics. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156-63. [Crossref]  [PubMed]
  32. Abdel-Latif ME, Davis PG, Wheeler KI, De Paoli AG, Dargaville PA. Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2021;5(5):CD011672. [Crossref]  [PubMed]  [PMC]
  33. Dargaville PA, Kamlin COF, Orsini F, Wang X, De Paoli AG, Kanmaz Kutman HG, et al. Effect of minimally invasive surfactant therapy vs sham treatment on death or bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome: the OPTIMIST-A randomized clinical trial. JAMA. 2021;326(24) 2478-87.
  34. Hartel C, Herting E, Humberg A, Hanke K, Mehler K, Keller T, et al. Association of administration of surfactant using less invasive methods with outcomes in extremely preterm infants less than 27 Weeks of gestation. JAMA Netw Open. 2022;5(8):e2225810.
  35. Fischer HS, Bührer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics. 2013;132(5):1351 [Crossref]  [PubMed]
  36. Schmölzer GM, Kumar M, Pichler G, et al. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ (Clin Res Ed). 2013;347:f5980. [Crossref]  [PubMed]  [PMC]
  37. Tana M, Tirone C, Aurilia C, Lio A, Paladini A, Fattore S, et al. Respiratory Management of the Preterm Infant: Supporting Evidence-Based Practice at the Bedside. Children (Basel). 2023;10(3):535. [Crossref]  [PubMed]  [PMC]
  38. De Paoli AG, Morley C, Davis PG. Nasal CPAP for neonates: what do we know in 2003? Arch Dis Child Fetal Neonatal Ed. 2003;88(3):F168-72. [Crossref]  [PubMed]  [PMC]
  39. Pillow JJ. Which continuous positive airway pressure system is best for the preterm infant with respiratory distress syndrome? Clin Perinatol. 2012;39(3):483-96. [Crossref]  [PubMed]
  40. Dumpa V, Avulakunta I, Bhandari V. Respiratory management in the premature neonate. Expert Rev Respir Med. 2023;17(2):155-70. [Crossref]  [PubMed]
  41. Bamat N, Fierro J, Mukerji A, Wright CJ, Millar D, Kirpalani H. Nasal continuous positive airway pressure levels for the prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2021;11(11):CD012778. [Crossref]  [PubMed]  [PMC]
  42. Ammari A, Suri M, Milisavljevic V, Sahni R, Bateman D, Sanocka U, et al. Variables associated with the early failure of nasal CPAP in very low birth weight infants. J Pediatr. 2005;147(3):341-7. [Crossref]  [PubMed]
  43. Kirpalani H, Millar D, Lemyre B, Yoder BA, Chiu A, Roberts RS; NIPPV Study Group. A trial comparing noninvasive ventilation strategies in preterm infants. N Engl J Med. 2013;369(7):611-20. [Crossref]  [PubMed]
  44. Luo K, Huang Y, Xiong T, Tang J. High-flow nasal cannula versus continuous positive airway pressure in primary respiratory support for preterm infants: A systematic review and meta-analysis. Front Pediatr. 2022;10:980024. [Crossref]  [PubMed]  [PMC]
  45. Li J, Chen L, Shi Y. Nasal high-frequency oscillatory ventilation versus nasal continuous positive airway pressure as primary respiratory support strategies for respiratory distress syndrome in preterm infants: a systematic review and meta-analysis. Eur J Pediatr. 2022;181(1):215-223. [Crossref]  [PubMed]
  46. Zhu X, Qi H, Feng Z, Shi Y, De Luca D; Nasal Oscillation Post-Extubation (NASONE) Study Group. Noninvasive high-frequency oscillatory ventilation vs nasal continuous positive airway pressure vs nasal intermittent positive pressure ventilation as postextubation support for preterm neonates in china: a randomized clinical trial. JAMA Pediatr. 2022;176(6):551-9. [Crossref]  [PubMed]  [PMC]
  47. Keszler M. Novel ventilation strategies to reduce adverse pulmonary outcome. Clin Perinatol. 2022;49:219-42. [Crossref]  [PubMed]
  48. Bell EF, Hintz SR, Hansen NI, Bann CM, Wyckoff MH, DeMauro SB. Mortality, In-Hospital Morbidity, Care Practices, and 2-Year Outcomes for Extremely Preterm Infants in the US, 2013-2018. JAMA. 2022;327(3):248-63. [Crossref]  [PubMed]  [PMC]
  49. Castoldi F, Daniele I, Fontana P, Cavigioli F, Lupo E, Lista G. Lung recruitment maneuver during volume guarantee ventilation of preterm infants with acute respiratory distress syndrome. Am J Perinatol. 2011;28(7):521-8. [Crossref]  [PubMed]
  50. Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation in neonates.Cochrane Database Syst Rev. 2017;10(10):CD003666. [Crossref]  [PubMed]
  51. Wallström L, Sjöberg A, Sindelar R. Early volume targeted ventilation in preterm infants born at 22-25 weeks of gestational age. Pediatr Pulmonol. 2021;56(5):1000-7. [Crossref]  [PubMed]
  52. Keszler M, Nassabeh-Montazami S, Abubakar K. Evolution of tidal volume requirement during the first 3 weeks of life in infants <800 g ventilated with Volume Guarantee. Arch Dis Child Fetal Neonatal Ed. 2009;94(4):F279-82. [Crossref]  [PubMed]
  53. Nassabeh-Montazami S, Abubakar KM, Keszler M. The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant.Pediatr Pulmonol. 2009;44(2):128-33. [Crossref]  [PubMed]
  54. Reyes ZC, Claure N, Tauscher MK, D'Ugard C, Vanbuskirk S, Bancalari E. Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants. Pediatrics. 2006;118(4):1409-17. [Crossref]  [PubMed]
  55. Abubakar K, Keszler M. Effect of volume guarantee combined with assist/control vs synchronized intermittent mandatory ventilation. J Perinatol. 2005;25(10):638-42. [Crossref]  [PubMed]
  56. De Jaegere AP, Deurloo EE, van Rijn RR, Offringa M, van Kaam AH. Individualized lungrecruitment during high-frequency ventilation in preterm infants is not associated with lung hyperinflation and air leaks. Eur J Pediatr. 2016;175(8):1085-90. [Crossref]  [PubMed]  [PMC]
  57. Cools F, Offringa M, Askie LM. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2015;19(3):CD000104. [Crossref]  [PubMed]  [PMC]
  58. Iscan B, Duman N, Tuzun F, Kumral A, Ozkan H. Impact of volume guarantee on high frequency oscillatory ventilation in preterm infants: a randomized crossover clinical trial. Neonatology. 2015;108(4):277-82. [Crossref]  [PubMed]
  59. Garcia SG, Pacheco GN, Navarro RC, Vázquez VS, Vélez AG, Luna MS. Lung recruitment in neonatal high-frequency oscillatory ventilation with volume-guarantee. Pediatr Pulmonol. 2022;57(12):3000-8. [Crossref]  [PubMed]
  60. Tana M, Paladini A, Tirone C, Aurilia C, Lio A, Bottoni A, et al. Effects of High-Frequency Oscillatory Ventilation With Volume Guarantee During Surfactant Treatment in Extremely Low Gestational Age Newborns With Respiratory Distress Syndrome: An Observational Study. Front Pediatr. 2022;9:804807. [Crossref]  [PubMed]  [PMC]
  61. Steinhorn R, Davis JM, Göpel W, Jobe A, Abman S, Laughon M, et al.; International Neonatal Consortium.Chronic Pulmonary Insufficiency of Prematurity: Developing Optimal Endpoints for Drug Development. J Pediatr. 2017;191:15-21.e1. [Crossref]  [PubMed]
  62. Danan C, Durrmeyer X, Brochard L, Decobert F, Benani M, Dassieu G. A randomized trial of delayed extubation for the reduction of reintubation in extremely preterm infants. Pediatr Pulmonol. 2008;43(2):117-24. [Crossref]  [PubMed]
  63. Tana M, Lio A, Tirone C, Aurilia C, Tiberi E, Serrao F, et al. Extubation from high-frequency oscillatory ventilation in extremely low birth weight infants: a prospective observational study. BMJ Paediatr Open. 2018;2(1):e000350. [Crossref]  [PubMed]  [PMC]