ROLE OF IMMUNITY IN THE PATHOPHYSIOLOGY OF MULTIPLE SCLEROSIS

Beria Nur Ertuğrul1
Mehmet Eranil2
Umur Poyraz3
Meral Öksüz4

1AnkaraEtlik City Hospital, Department of Neurology, Ankara, Türkiye
2AnkaraEtlik City Hospital, Department of Neurology, Ankara, Türkiye
3AnkaraEtlik City Hospital, Department of Neurology, Ankara, Türkiye
4AnkaraEtlik City Hospital, Department of Neurology, Ankara, Türkiye

Ertuğrul BN, Eranil M, Poyraz U, Öksüz M. Role of Immunity in the Pathophysiology of Multiple Sclerosis. Melek İM, Aydoğan S, eds. Microbiota. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.151-161.

ABSTRACT

Multiple sclerosis is a chronic disease of the central nervous system characterized by loss of function resulting from immune-mediated inflammation, demyelination and axonal damage. Inflammatory demyelination has been recognized as the basis of the pathogenesis of multiple sclerosis. Autoimmunity plays an important role in the etiology of multiple sclerosis. Autoimmune diseases are characterized by abnormal autoantibody production. Genetic and environmental factors affect the immune system and cause abnormal production of autoantibody-producing cells and proinflammatory cytokines. Increasing incidence of autoimmune diseases is related to multifactorial causes, such as dietary changes and widespread administration of antibiotics, leading to significant changes in the gut microbiota. The term microbiota refers to microorganisms and microbiome refers to microorganisms and their relationship with their environment. The microbiota actively influences multiple host functions, including circadian rhythm, metabolism and immunity, and maintains homeostasis of our immune system. Also gut microbiota is involved in important processes in the central nervous system, such as blood-brain barrier formation, myelination, neurogenesis, microglia maturation. Microbiota plays an important role in these neurological processes through bidirectional communication between the gut microbiota and brain, so-called microbiota-gut-brain axis. The effect of microbiome on immune system is proposed to be the main mechanism in the genesis of multiple sclerosis. This mechanism involves activation of the immune system by pathogens and subsequent changes in microbiome composition. It is known that pathological changes in the gut microbiota can affect inflammation in central nervous system. Immune-mediated inflammation, resulting from the link between microbiota and autoimmune response, plays an important role in the onset and development of multiple sclerosis by inducing demyelination and axonal damage. In this chapter, the role of immunity in the pathophysiology of multiple sclerosis, the relationship between microbiota and immunity, the relationship between microbiota and central nervous system and multiple sclerosis are explained.

Keywords: Multiple sclerosis; Microbiota; Brain-gut axis; Autoimmunity; Central nervous system

Referanslar

  1. Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23(1):683-747. [Crossref]  [PubMed]
  2. Frohman EM, Racke MK, Raine CS. Multiple sclerosis-the plaque and its pathogenesis. New England Journal of Medicine. 2006;354(9):942-55. [Crossref]  [PubMed]
  3. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. New England Journal of Medicine. 1998;338(5):278-85. [Crossref]  [PubMed]
  4. Reich D. Lucchinetti CF and Calabresi PA. Multiple Sclerosis New Engl J Med. 2018;378:169-80. [Crossref]  [PubMed]  [PMC]
  5. Mexhitaj I, Nyirenda MH, Li R, O'Mahony J, Rezk A, Rozenberg A, et al. Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain. 2019;142(3):617-32. [Crossref]  [PubMed]  [PMC]
  6. Cao Y, Goods BA, Raddassi K, Nepom GT, Kwok WW, Love JC, et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Science translational medicine. 2015;7(287):287ra74-ra74. [Crossref]
  7. Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. The Lancet Neurology. 2016;15(2):198-209. [Crossref]  [PubMed]
  8. Galli E, Hartmann FJ, Schreiner B, Ingelfinger F, Arvaniti E, Diebold M, et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nature medicine. 2019;25(8):1290-300. [Crossref]  [PubMed]  [PMC]
  9. Hu D, Notarbartolo S, Croonenborghs T, Patel B, Cialic R, Yang T-H, et al. Transcriptional signature of human pro-inflammatory TH17 cells identifies reduced IL10 gene expression in multiple sclerosis. Nature communications. 2017;8(1):1600. [Crossref]  [PubMed]  [PMC]
  10. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular helper T cells. Annual review of immunology. 2016;34(1):335-68. [Crossref]  [PubMed]
  11. Guo J, Zhao C, Wu F, Tao L, Zhang C, Zhao D, et al. T follicular helper-like cells are involved in the pathogenesis of experimental autoimmune encephalomyelitis. Frontiers in Immunology. 2018;9:944. [Crossref]  [PubMed]  [PMC]
  12. von Essen MR, Ammitzbøll C, Hansen RH, Petersen ER, McWilliam O, Marquart HV, et al. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain. 2019;142(1):120-32. [Crossref]  [PubMed]
  13. Sabatino Jr JJ, Wilson MR, Calabresi PA, Hauser SL, Schneck JP, Zamvil SS. Anti-CD20 therapy depletes activated myelin-specific CD8+ T cells in multiple sclerosis. Proceedings of the National Academy of Sciences. 2019;116(51):25800-7. [Crossref]  [PubMed]  [PMC]
  14. Schuh E, Berer K, Mulazzani M, Feil K, Meinl I, Lahm H, et al. Features of human CD3+ CD20+ T cells. The Journal of Immunology. 2016;197(4):1111-7. [Crossref]  [PubMed]
  15. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018;97(4):742- 68. [Crossref]  [PubMed]
  16. Schneider A, Long SA, Cerosaletti K, Ni CT, Samuels P, Kita M, et al. In active relapsing-remitting multiple sclerosis, effector T cell resistance to adaptive Tregs involves IL-6-mediated signaling. Science translational medicine. 2013;5(170):170ra15-ra15. [Crossref]  [PMC]
  17. Dhaeze T, Peelen E, Hombrouck A, Peeters L, Van Wijmeersch B, Lemkens N, et al. Circulating follicular regulatory T cells are defective in multiple sclerosis. The Journal of Immunology. 2015;195(3):832-40. [Crossref]  [PubMed]
  18. Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain. 2018;141(7):2066-82. [Crossref]  [PubMed]  [PMC]
  19. Fransen NL, Hsiao C-C, van der Poel M, Engelenburg HJ, Verdaasdonk K, Vincenten MC, et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain. 2020;143(6):1714-30. [Crossref]  [PubMed]
  20. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W. Acute axonal injury in multiple sclerosis: correlation with demyelination and inflammation. Brain. 2000;123(6):1174-83. [Crossref]  [PubMed]
  21. Ifergan I, Kebir H, Alvarez JI, Marceau G, Bernard M, Bourbonniere L, et al. Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on α4 integrin. Brain. 2011;134(12):3560-77. [Crossref]  [PubMed]  [PMC]
  22. Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. The Lancet Neurology. 2016;15(3):317-31. [Crossref]  [PubMed]
  23. Saxena A, Bauer J, Scheikl T, Zappulla J, Audebert M, Desbois S, et al. Cutting edge: multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. The Journal of Immunology. 2008;181(3):1617-21. [Crossref]  [PubMed]
  24. Saligrama N, Zhao F, Sikora MJ, Serratelli WS, Fernandes RA, Louis DM, et al. Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature. 2019;572(7770):481-7. [Crossref]  [PubMed]  [PMC]
  25. Leng T, Akther HD, Hackstein C-P, Powell K, King T, Friedrich M, et al. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell reports. 2019;28(12):3077-91. e5. [Crossref]  [PubMed]  [PMC]
  26. Carolan E, Tobin LM, Mangan BA, Corrigan M, Gaoatswe G, Byrne G, et al. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. The Journal of Immunology. 2015;194(12):5775-80. [Crossref]  [PubMed]
  27. Obermeier B, Mentele R, Malotka J, Kellermann J, Kümpfel T, Wekerle H, et al. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nature medicine. 2008;14(6):688-93. [Crossref]  [PubMed]
  28. Bar‐Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, et al. Abnormal B‐cell cytokine responses a trigger of T‐cell-mediated disease in MS? Annals of neurology. 2010;67(4):452-61. [Crossref]  [PubMed]
  29. Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. The Journal of Immunology. 2007;178(10):6092-9. [Crossref]  [PubMed]
  30. Wang J, Jelcic I, Mühlenbruch L, Haunerdinger V, Toussaint NC, Zhao Y, et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell. 2020;183(5):1264-81. e20. [Crossref]  [PubMed]  [PMC]
  31. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337-40. [Crossref]  [PubMed]
  32. Xu H, Liu M, Cao J, Li X, Fan D, Xia Y, et al. The dynamic interplay between the gut microbiota and autoimmune diseases. Journal of immunology research. 2019;2019(1):7546047. [Crossref]  [PubMed]  [PMC]
  33. Ansaldo E, Farley TK, Belkaid Y. Control of immunity by the microbiota. Annual review of immunology. 2021;39(1):449-79. [Crossref]  [PubMed]
  34. den Besten G, Gerding A, van Dijk TH, Ciapaite J, Bleeker A, van Eunen K, et al. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1. PloS one. 2015;10(8):e0136364. [Crossref]  [PubMed]  [PMC]
  35. Fulde M, Sommer F, Chassaing B, van Vorst K, Dupont A, Hensel M, et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature.2018;560(7719):489-93. [Crossref]  [PubMed]
  36. Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nature Reviews Immunology. 2019;19(3):184-97. [Crossref]  [PubMed]
  37. Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. Adaptive immune regulation in the gut: T cell-dependent and T cell- independent IgA synthesis. Annual review of immunology. 2010;28(1):243-73. [Crossref]  [PubMed]
  38. Macpherson AJ, Hunziker L, McCoy K, Lamarre A. IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes and infection. 2001;3(12):1021-35. [Crossref]  [PubMed]
  39. Smythies LE, Shen R, Bimczok D, Novak L, Clements RH, Eckhoff DE, et al. Inflammation anergy in human intestinal macrophages is due to Smad-induced IκBα expression and NF-κB inactivation. Journal of Biological Chemistry. 2010;285(25):19593-604. [Crossref]  [PubMed]  [PMC]
  40. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455(7216):1109-13. [Crossref]  [PubMed]  [PMC]
  41. Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature immunology. 2017;18(5):552-62. [Crossref]  [PubMed]
  42. Qin Y, Bao X, Zheng M. CD8+ T-cell immunity orchestrated by iNKT cells. Frontiers in Immunology. 2023;13:1109347. [Crossref]  [PubMed]  [PMC]
  43. Zhao Q, Elson CO. Adaptive immune education by gut microbiota antigens. Immunology. 2018;154(1):28-37. [Crossref]  [PubMed]  [PMC]
  44. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65-74. [Crossref]  [PubMed]
  45. Cox CB, Storm EE, Kapoor VN, Chavarria-Smith J, Lin DL, Wang L, et al. IL-1R1-dependent signaling coordinates epithelial regeneration in response to intestinal damage. Science Immunology. 2021;6(59):eabe8856. [Crossref]  [PubMed]
  46. Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, et al. Inhibition of dectin-1 signaling ameliorates colitis by inducing lactobacillus-mediated regulatory T cell expansion in the intestine. Cell host & microbe. 2015;18(2):183-97. [Crossref]  [PubMed]
  47. Kaisar MM, Pelgrom LR, Van der Ham AJ, Yazdanbakhsh M, Everts B. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Frontiers in immunology. 2017;8:1429. [Crossref]  [PubMed]  [PMC]
  48. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128-39. [Crossref]  [PubMed]  [PMC]
  49. Chen GY, Liu M, Wang F, Bertin J, Núñez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. The Journal of immunology. 2011;186(12):7187-94. [Crossref]  [PubMed]  [PMC]
  50. Rogier R, Koenders MI, Abdollahi-Roodsaz S. Toll‐like receptor mediated modulation of T cell response by commensal intestinal microbiota as a trigger for autoimmune arthritis. Journal of immunology research. 2015;2015(1):527696. [Crossref]  [PubMed]  [PMC]
  51. Wang X, Liang Z, Wang S, Ma D, Zhu M, Feng J. Role of Gut Microbiota in Multiple Sclerosis and Potential Therapeutic Implications. Curr Neuropharmacol. 2021 Jun 30;20(7):1413-26. [Crossref]  [PubMed]  [PMC]
  52. Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Vol. 46, Immunopharmacology and Immunotoxicology. Taylor and Francis Ltd.; 2024. p. 355-77. [Crossref]  [PubMed]
  53. Dunalska A, Saramak K, Szejko N. The Role of Gut Microbiome in the Pathogenesis of Multiple Sclerosis and Related Disorders. Vol. 12, Cells. Multidisciplinary Digital Publishing Institute (MDPI); 2023. [Crossref]  [PubMed]  [PMC]
  54. Preiningerova JL, Zakostelska ZJ, Srinivasan A, Ticha V, Kovarova I, Kleinova P, et al. Multiple Sclerosis and Microbiome. Vol. 12, Biomolecules. MDPI; 2022. [Crossref]  [PubMed]  [PMC]