Sinyal İletimi
Zerrin Barut, F. Tuba Akdeniz, G. Seda Güleç
Hücreler arası iletişim, canlı organizmaların yaşamsal işlevlerini sürdürmelerinde kritik bir öneme sahiptir. Bu sofistike iletişim ağı, hücrelerin fizyolojik durumlarını, çevresel sinyalleri algılamalarını ve uygun yanıtlar vererek organizmanın genel homeostazını sağlamalarını mümkün kılar. Bu bölüm, hücreler arası iletişim, ikinci haberci molekülleri ve sinyal yolaklarının önemi ve bu sistemlerin bozulmasının neden olduğu patolojik durumları ele almaktadır.
Bu bilgiler, hücrelerarası iletişimin ve bu iletişimin düzensizliğinin biyomedikal araştırmalar ve klinik uygulamalar için önemine de dikkat çeker.
Referanslar
- Abbarin N, San Miguel S, Holcroft J, Iwasaki K & Ganss B (2015) The enamel protein amelotin is a promoter Abhinand, C. S., Raju, R., Soumya, S. J., Arya, P. S., & Sudhakaran, P. R. (2016). VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. Journal of cell communication and signaling, 10, 347-354. [Crossref]
- Albensi, B. C. (2019). What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion?. Frontiers in cell and developmental biology, 7, 154. [Crossref]
- Albers, R. W., & Agranoff, B. W. (1981). Basic neurochemistry. G. J. Siegel, & R. Katzman (Eds.). Boston: Little, Brown.
- Ambudkar, I. S. (2014). Ca2+ signaling and regulation of fuid secretion in salivary gland acinar cells. Cell calcium, 55(6), 297-305. [Crossref]
- Bao, Z., Zhang, B., Li, L., Ge, Q., Gu, W., Bai, Y. (2020). Identifying disease-associated signaling pathways through a novel effector gene analysis. Peer J. Published online 2020 Aug 14. [Crossref]
- Barolo, S., & Posakony, J. W. (2002). Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes & development, 16(10), 1167-1181. [Crossref]
- Battle, T. E., & Frank, D. A. (2002). The role of STATs in apoptosis. Current molecular medicine, 2(4), 381-392. [Crossref]
- Biswal, S., Panda, M., Sahoo, R. K., Tripathi, S. K., & Biswal, B. K. (2023). Tumour microenvironment and aberrant signaling pathways in cisplatin resistance and strategies to overcome in oral cancer. Archives of Oral Biology, 105697. [Crossref]
- Briscoe, J., & Thérond, P. P. (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nature reviews Molecular cell biology, 14(7), 416-429. [Crossref]
- Choudhry, Z., Rikani, A. A., Choudhry, A. M., Tariq, S., Zakaria, F., Asghar, M. W., ... & Mobassarah, N. J. (2014). Sonic hedgehog signalling pathway: a complex network. Annals of neurosciences, 21(1), 28. [Crossref]
- Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. Pathways of Intracellular Signal Transduction.
- Dillon, M., Lopez, A., Lin, E., Sales, D., Perets, R., & Jain, P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers. 2021; 13 (20): 5059. [Crossref]
- Duman RS, Nestler EJ. Guanilil Siklaz. In: Siegel GJ, Agranoff BW, Albers RW, et al., editörler. Temel Nörokimya: Moleküler, Hücresel ve Tıbbi Yönler. 6. baskı. Philadelphia: Lippincott-Raven; 1999. Şu adresten erişilebilir: https://www.ncbi.nlm.nih.gov/books/NBK28167/
- Guo, Y. J., Pan, W. W., Liu, S. B., Shen, Z. F., Xu, Y., & Hu, L. L. (2020). ERK/MAPK signalling pathway and tumorigenesis. Experimental and therapeutic medicine, 19(3), 1997-2007. [Crossref]
- Hu, X., Li, J., Fu, M., Zhao, X., & Wang, W. (2021). The JAK/STAT signaling pathway: from bench to clinic. Signal transduction and targeted therapy, 6(1), 402. [Crossref]
- Huang, F., & Chen, Y. G. (2012). Regulation of TGF-β receptor activity. Cell & bioscience, 2, 1-10. [Crossref]
- Hwang, S. M., Lee, K., Im, S. T., Go, E. J., Kim, Y. H., & Park, C. K. (2020). Co-application of eugenol and QX-314 elicits the prolonged blockade of voltage-gated sodium channels in nociceptive trigeminal ganglion neurons. Biomolecules, 10(11), 1513. [Crossref]
- Jiang, X., Huang, Z., Sun, X., Zheng, X., Liu, J., Shen, J., ... & Zhao, J. (2020). CCL18-NIR1 promotes oral cancer cell growth and metastasis by activating the JAK2/STAT3 signaling pathway. BMC cancer, 20, 1-13. [Crossref]
- Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in immunology, 5, 461. [Crossref]
- Komiya, Y., & Habas, R. (2008). Wnt signal transduction pathways. Organogenesis, 4(2), 68-75. [Crossref]
- Kopan, R. (2012). Notch signaling. Cold Spring Harbor perspectives in biology, 4(10), a011213. [Crossref]
- Krauss, G. (2006). Biochemistry of signal transduction and regulation. John Wiley & Sons.
- Lawrence, T. (2009). The nuclear factor NF-κB pathway in infammation. Cold Spring Harbor perspectives in biology, 1(6), a001651. [Crossref]
- Liu, M., Goldman, G., MacDougall, M., & Chen, S. (2022). BMP signaling pathway in dentin development and diseases. Cells, 11(14), 2216. [Crossref]
- Lu, X., Yang, J., Zhao, S., & Liu, S. (2019). Advances of Wnt signalling pathway in dental development and potential clinical application. Organogenesis, 15(4), 101-110. [Crossref]
- Mavers M, Ruderman EM, Perlman H. Intracellular signal pathways: potential for therapies. Curr Rheumatol Rep. 2009 Oct;11(5):378-85. [Crossref] [PubMed] [PMC]
- Molina, J. R., & Adjei, A. A. (2006). The ras/raf/mapk pathway. Journal of Thoracic Oncology, 1(1), 7-9. [Crossref]
- Newton, A. C., Bootman, M. D., & Scott, J. D. (2016). Second messengers. Cold Spring Harbor perspectives in biology, 8(8), a005926. [Crossref]
- Peng, Q., Deng, Z., Pan, H., Gu, L., Liu, O., & Tang, Z. (2018). Mitogen-activated protein kinase signaling pathway in oral cancer. Oncology letters, 15(2), 1379-1388. [Crossref]
- Sassone-Corsi, P. (2012). The cyclic AMP pathway. Cold Spring Harbor perspectives in biology, 4(12), a011148. [Crossref]
- Siqueira, S. R. D. T. D., Alves, B., Malpartida, H. M. G., Teixeira, M. J., & Siqueira, J. T. T. D. (2009). Abnormal expression of voltage-gated sodium channels Nav1. 7, Nav1. 3 and Nav1. 8 in trigeminal neuralgia. Neuroscience, 164(2), 573-577. [Crossref]
- Stegh, A. H. (2012). Targeting the p53 signaling pathway in cancer therapy-the promises, challenges and perils. Expert opinion on therapeutic targets, 16(1), 67-83. [Crossref]
- Tobeiha, M., Moghadasian, M. H., Amin, N., & Jafarnejad, S. (2020). RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. BioMed research international, 2020. [Crossref]
- Tzavlaki, K., & Moustakas, A. (2020). TGF-β Signaling. Biomolecules, 10(3), 487. [Crossref]
- Wells, J. E., Bingham, V., Rowland, K. C., & Hatton, J. (2007). Expression of Nav1. 9 channels in human dental pulp and trigeminal ganglion. Journal of endodontics, 33(10), 1172-1176. Wu, G. S. (2004). The functional interactions between the MAPK and p53 signaling pathways. Cancer biology & therapy, 3(2), 156-161. [Crossref]
- You, Z., Liu, S. P., Du, J., Wu, Y. H., & Zhang, S. Z. (2019). Advancements in MAPK signaling pathways and MAPK-targeted therapies for ameloblastoma: a review. Journal of Oral Pathology & Medicine, 48(3), 201-205. [Crossref]
- Zhou, B., Lin, W., Long, Y., Yang, Y., Zhang, H., Wu, K., & Chu, Q. (2022). Notch signaling pathway: Architecture, disease, and therapeutics. Signal transduction and targeted therapy, 7(1), 95. [Crossref]