State of the Art Non-Invasive Respiratory Support of Preterm Infants: Clues for Precision

Merih ÇETİNKAYAa

aHealth Sciences University Başakşehir Çam and Sakura City Hospital, Department of Neonatology, İstanbul, Türkiye

ABSTRACT
Personalized or precision medicine concept has gained attention in recent years with the aim of providing a more precise and individualized algorithm for prevention, diagnosis and treatment of diseases. This approach has started to be used in neonatology including newborn screening, nutrition, sepsis, renal injury, hemodynamic assessment, lung pathology, epilepsy and neonatal pharmacology. However, to our best of knowledge, there is no data about the use of precision medicine for non-invasive ventilation usage in preterm infants. Non-invasive ventilation is the most recommended and widely used respiratory support in both delivery rooms and neonatal intensive care units with different modes. Some novel imaging modalities, genetic analyses and personalized designed nasal masks showed promising results for the use of precision medicine for neonatal respiratory diseases. The aim of this review is to provide clues and insights for the integration of precision medicine concept in preterm infants who require non-invasive ventilation.
Keywords: Non-invasive ventilation; precision medicine; preterm infant

Referanslar

  1. Pammi M, Aghaeepour N, Neu J. Multiomics, artificial intelligence and precision medicine in perinatology. Pediatr Res. 2023;93(2):308-15. [Crossref]  [PubMed]  [PMC]
  2. Delpierre C, Lefevre T. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Front Sociol. 2023;8: 1112159. [Crossref]  [PubMed]  [PMC]
  3. Naithani N, Sinha S, Misra P, Vasudevan B, Sahu R. Med J Armed Forces India. 2021;77(3):249-57. [Crossref]  [PubMed]  [PMC]
  4. Sirota M, Thomas CG, Liu R, Zuhl M, Banarjee P, Wong RJ, et al. Enabling precision medicine in neonatology, an integrated repository for preterm birth research. Sci Data. 2018;5:180219. [Crossref]  [PubMed]  [PMC]
  5. Leite SS, Barros AC, Liz CF, Aires S, Carvalho C. Precision medicine in neonatology. J Pediatr Neonat Individual Med. 2022;11(2):e110210.
  6. Dai W, Zhou W. A narrative review of precision medicine in neonatal sepsis: genetic and epigenetic factors associated with disease susceptibility. Transl Pediatr. 2023;12(4):749-67. [Crossref]  [PubMed]  [PMC]
  7. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in care practices, morbidity and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314(10):1039-51. [Crossref]  [PubMed]  [PMC]
  8. Keszler M. Novel ventilation strategies to reduce adverse pulmonary outcomes. Clin Perinatol. 2022;49:219-42. [Crossref]  [PubMed]
  9. Tana M, Tirone C, Aurilia C, Lio A, Paladini A, Fattore S, et al. Respiratory management of the preterm infant: supporting evidence-based practice at the bedside. Children. 2023;10:535. [Crossref]  [PubMed]  [PMC]
  10. Boel L, Hixson T, Brown L, Sage J, Kotecha S, Chakraborty M. Non-invasive respiratory support in preterm infants. Paediatr Respir Rev. 2022;43:53-9. [Crossref]  [PubMed]
  11. Dumpa V, Avulakunta I, Bhandari V. Respiratory management in the premature neonate. Expert Rev Respir Med. 2023;17(2):155-70. [Crossref]  [PubMed]
  12. Sweet DG, Carnielli VP, Greisen G, Hallman M, Klebermass-Schrehof K, Ozek E, et al. European consensus guidelines on the management of respiratory distress syndrome: 2022 update. Neonatology. 2023;120(1):3-23. [Crossref]  [PubMed]  [PMC]
  13. Boel L, Broad K, Chakraborty M. Non invasive respiratory support in newborn infants. Paediatr Child Health. 2017;28:6-12. [Crossref]
  14. Gupta S, Donn SM. Continuous positive airway pressure: Physiology and comparison of devices. Semin Fetal Neonat Med. 2016;21(3):204-11. [Crossref]  [PubMed]
  15. Subramaniam P, Ho JJ, Davis PG. Prophylactic or very early initiation ofcontinuous positive airway pressure (CPAP) for preterm infants. Cochrane Database Syst Rev. 2021;10:CD001243. [Crossref]  [PubMed]  [PMC]
  16. Shi Y, Muniraman H, Biniwale M, Ramanathan R. A review on non-invasive respiratory support for management of respiratory distress in extremely preterm infants. Front Pediatr. 2020;8:270. [Crossref]  [PubMed]  [PMC]
  17. Ramaswamy VV, More K, Roehr CC, Bandiya P, Nangia S. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: Systematic review and network meta-analysis. Pediatr Pulmonol. 2020;55(11):2940-63. [Crossref]  [PubMed]
  18. Lemyre B, Deguise MO, Benson P, Kirpalani H, Ekhaguera OA, Davis PG. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev. 2023;7(7):CD005384. [Crossref]  [PubMed]  [PMC]
  19. Rüegger CM, Owen LS, Davis PG. Nasal intermittent positive pressure ventilation for neonatal respiratory distress syndrome. Clin Perinatol. 2021;48(4):725-44. [Crossref]  [PubMed]
  20. De Luca D, Centorrino R. Nasal high-frequency ventilation. Clin Perinatol. 2021;48(4):761-82. [Crossref]  [PubMed]
  21. Haidar Shehadeh AM. Non-invasive high flow oscillatory ventilation in comparison with nasal continuous positive pressure ventilation for respiratory distress syndrome, a literature review. J Matern Fetal Neonatal Med. 2021; 34(17):2900-9. [Crossref]  [PubMed]
  22. Li J, Chen L, Shi Y. Nasal high-frequency oscillatory ventilation versus nasal continuous positive airway pressure as primary respiratory support strategies for respiratory distress syndrome in preterm infants: a systematic review and meta-analysis. Eur J Pediatr. 2022;181(1):215-23. [Crossref]  [PubMed]
  23. Wang K, Zhou X, Gao S, Li F, Ju R. Noninvasive high-frequency oscillatory ventilation versus nasal intermittent positive pressure ventilation for preterm infants as an extubation support: A systematic review and meta-analysis. Pediatr Pulmonol. 2023;58(3):704-11. [Crossref]  [PubMed]
  24. Luo K, Huang Y, Xiang T, Tang J. High-flow nasal cannula versus continuous positive airway pressure in primary respiratory support for preterm infants: A systematic review and meta-analysis. Front Pediatr. 2022;10:980024. [Crossref]  [PubMed]  [PMC]
  25. Bruet S, Butin M, Dutheil F. Systematic review of high-flow nasal cannula versus continuous positive airway pressure for primary support in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022;107(1):56-9. [Crossref]  [PubMed]
  26. Onland W, Hutten J, Miedema M, Bos LD, Brinkman P, Maitland-van der Zee AH, et al. Precision medicine in neonates: future perspectives for the lung. Front Pediatr. 2020;8:586061. [Crossref]  [PubMed]  [PMC]
  27. De Luca D, Autilio C, Pezza L, Shankar-Aguilera S, Tingay DG, Carnielli VP. Personalized medicine for the management of RDS in preterm infants. Neonatology. 2021;118:127-38. [Crossref]  [PubMed]
  28. Autilio C. Techniques to evaluate surfactant activity for a personalized therapy of RDS neonates. Biomed J. 2021;44(6):671-7. [Crossref]  [PubMed]  [PMC]
  29. Wang J, Wei H, Chen H, Wan K, Mao R, Xiao P, et al. Application of ultrasonography in neonatal lung disease: an updated review. Front Pediatr. 2022; 10:1020437. [Crossref]  [PubMed]  [PMC]
  30. Capasso L, Pacella D, Migliaro F, Grasso F, Corsini I, De Luca D, et al. Can lung ultrasound score accurately predict surfactant replacement? a systematic review and meta-analysis of diagnostic test studies. Pediatr Pulmonol. 2023;58:1427-37. [Crossref]
  31. Raimondi F, Migliaro F, Sodano A, Ferrera T, Lama S, Vallıne G, et al. Use of neonatal chest ultrasound to predict noninvasive ventilation failure. Pediatrics. 2014;134(4):e1089-94. [Crossref]  [PubMed]
  32. De Luca D. Respiratory distress syndrome in preterm neonates in the era of precision medicine: a modern critical care-based approach. Pediatr Neonatol. 2021;62 Suppl 1:S3-S9. [Crossref]  [PubMed]
  33. King BC, Gandhi BB, Jackson A, Katakam L, Pammi M, Suresh G. Mask versus prongs for nasal continuous positive airway pressure in pre-term infants: a systematic review and meta-analysis. Neonatology. 2019;116(2):100-14. [Crossref]  [PubMed]  [PMC]
  34. Razak A, Patel W. Nasal mask vs binasal prongs for nasal continuous positive airway pressure in preterm infants: a systematic review and meta-analysis. Pediatr Pulmonol. 2020;55(9):2261-71. [Crossref]  [PubMed]
  35. Prakash R, De Paoli AG, Oddie SJ, Davis PG, McGuire W. Mask versus prongs as interfaces for nasal continuous positive airway pressure in preterm infants. Cochrane Database Syst Rev. 2022;11(11):CD015129. [Crossref]  [PubMed]  [PMC]
  36. Gautam G, Gupta N, Sasidharan R, Thanigainathan S, Yadav B, Singh K, et al. Systematic rotation versus continuous application of nasal prongs or nasal mask in preterm infants on CPAP: a randomized controlled trial. Eur J Pediatr. 2023;182(6):2645-54. [Crossref]  [PubMed]  [PMC]
  37. Borras-Novell C, Causapie MG, Murcia G, Djian D, Garcia-Algar O. Development of a 3D individualized mask for neonatal non-invasive ventilation. Int J Bioprint. 2022;8(2):516. [Crossref]  [PubMed]  [PMC]
  38. Kamath AA, Kamath MJ, Ekici S, Stans AS, Colby CE, Matsumoto JM, et al. Workflow to develop 3D designed personalized neonatal CPAP masks using iPhone structured light facial scanning. 3D Print Med. 2022;8(1):23. [Crossref]  [PubMed]  [PMC]
  39. Martin-Gonzalez A, Morras de la Torre B, Bergon-Sendin E, Jesús Pérez-López A, Ferrando-Sánchez A, Pallás-Alonso CR, et al. Feasibility of three-dimensional nasal imaging and printing in producing customized nasal masks for non-invasive ventilation in extremely low birth weight infant: a pilot study. Int J Bioprint. 2022;9(1):627. [Crossref]  [PubMed]  [PMC]
  40. Yu KH, Li J, Synder M, Shaw GM, O'Brodovich HM. The genetic predisposition to bronchopulmonary dysplasia. Curr Opin Pediatr. 2016;28(3):318-23. [Crossref]  [PubMed]  [PMC]
  41. Akat A, Semerci SY, Ugurel OM, Erdemir A, Danhaive O, Cetinkaya M, et al. Bronchopulmonary dysplasia and wnt pathway-associated single nucleotide polymorphisms. Pediatr Res. 2022;92(3):888-98. [Crossref]  [PubMed]
  42. Gilfillan M, Bhandari V. Moving bronchopulmonary dysplasia research from the bedside to the bench. Am J Physiol Lung Cell Mol Physiol. 2022;322(6): L804-L21. [Crossref]  [PubMed]
  43. Pereira-Fantini PM, Ferguson K, McCall K, Oakley R, Perkins E, Byars S, et al. Respiratory strategy at birth initiates distinct lung injury phenotypes in the preterm lamb lung. Resp Rev. 2022;23(1):146. [Crossref]