SUCCESS STORIES AND CHALLENGES IN TECHNOLOGY INTEGRATION

Eda Etik

İstanbul University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, İstanbul, Türkiye

Etik E. Success Stories and Challenges in Technology Integration. Karasu HA, ed. Advanced Technologies in Oral and Maxillofacial Surgery. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.145161.

ABSTRACT

Technological advancements in oral, dental, and maxillofacial surgery play a significant role in the transformation and development of the healthcare sector today. Advanced technological applications, either currently in use or under development, aim to make clinical practice more efficient, faster, and reliable. These technological innovations include artificial intelligence (AI) algorithms, surgical navi gation systems, virtual reality (VR) and augmented reality (AR) applications, simulationassisted sur gical planning systems, threedimensional (3D) printing technologies, 3D scanners, and finite element analysis tools. In maxillofacial surgery, these technological advancements enhance surgical accuracy in procedures such as tooth extractions, bone grafting, and treatment of jaw cysts. Threedimensional imaging and virtual planning enable the precise placement of implants in optimal positions, enhancing patient comfort while minimizing the risk of complications. In the diagnosis and treatment of facial and jaw fractures, computerassisted analysis systems and 3Dprinted, patientspecific models offer personalized cutting guides, plate systems, and prostheses, providing significant advantages in trauma management. By overlapping MRI and CT images, a more detailed evaluation of soft and hard tissue pathologies becomes possible. Virtual surgical simulations simplify the planning of orthognathic sur gical operations, strengthening communication between the patient and the surgeon. Technological systems also play a critical role in correcting complex developmental anomalies or deformities caused by trauma, particularly in craniofacial surgery. In temporomandibular joint (TMJ) surgery, imaging and navigation systems enhance the precision of surgical interventions, enabling treatments tailored to the patient,’s anatomy. In cosmetic facial implant applications, facial implants customized to the patient’s needs are produced using 3D printing technologies, revolutionizing aesthetic outcomes. De spite these advancements, several limitations and challenges persist, including high costs of advanced technologies, accessibility issues in certain regions, technical expertise requirements and the need for specialized training, data security and privacy concerns, dependency risks on technology, challenges with keeping systems uptodate and ensuring compatibility, and ethical concerns and potential vi olations. This section comprehensively examines the applications, opportunities, and limitations of technological systems preferred in healthcare, particularly in maxillofacial surgery. Current literature and relevant studies have been thoroughly analyzed to provide a comprehensive guide for clinicians, offering insights into both existing capabilities and areas requiring further development.

Keywords: Artificial intelligence; Biomedical technology; Surgical navigation systems; Virtual reality

Referanslar

  1. Nagalaxmi V, Stuti G. Radiovisiography-A Mile Stone In Digital Imaging. Indian Journal of Dental Sciences. 2013;5(2). [Link]
  2. Uffmann M, Schaefer-Prokop C. Digital radiography: the balance between image quality and required radiation dose. European journal of radiology. 2009;72(2):202-8. [Crossref]  [PubMed]
  3. Giannopoulos AA, Pietila T. Post-processing of DICOM Images. 3D printing in medicine: a practical guide for medical professionals. 2017:23-34. [Crossref]
  4. Shampo MA, Kyle RA. Godfrey Hounsfield--developer of computed tomographic scanning. Mayo Clin Proc. 1996;71(10):990. [Crossref]  [PubMed]
  5. Harnsberger HR. Diagnostic imaging: head and neck. (No Title). 2004. [Link]
  6. Farman AG, Scarfe WC, editors. The basics of maxillofacial cone beam computed tomography. Seminars in Orthodontics. Elsevier. 2009;15:2-13 [Crossref]
  7. Jones EMM. Comparing Cone Beam Computed Tomography with Multi-Slice Computed Tomography in Diagnosing Osseous Defects at the Mandibular Condyle: The Ohio State University; 2015. [Link]
  8. Nagarajappa AK, Dwivedi N, Tiwari R. Artifacts: The downturn of CBCT image. J Int Soc Prev Community Dent. 2015;5(6):440-445. [Crossref]  [PubMed]  [PMC]
  9. Howerton Jr WB, Mora MA. Advancements in digital imaging: what is new and on the horizon? The Journal of the American Dental Association. 2008;139:S20-S4. [Crossref]  [PubMed]
  10. White SC, Pharoah MJ. The evolution and application of dental maxillofacial imaging modalities. Dental Clinics of North America. 2008;52(4):689-705. [Crossref]  [PubMed]
  11. Heiland M, Pohlenz P, Blessmann M, Werle H, Fraederich M, Schmelzle R, et al. Navigated implantation after microsurgical bone transfer using intraoperatively acquired conebeam computed tomography data sets. International journal of oral and maxillofacial surgery. 2008;37(1):70-5. [Crossref]  [PubMed]
  12. Kondoh T, Westesson P-L, Takahashi T, Seto K-i. Prevalence of morphological changes in the surfaces of the temporomandibular joint disc associated with internal derangement. Journal of oral and maxillofacial surgery. 1998;56(3):339-43. [Crossref]  [PubMed]
  13. Al-Haj Husain A, Sekerci E, Schönegg D, Bosshard FA, Stadlinger B, Winklhofer S, et al. Dental MRI of Oral Soft-Tissue Tumors-Optimized Use of Black Bone MRI Sequences and a 15-Channel Mandibular Coil. Journal of Imaging. 2022;8(5):146. [Crossref]  [PubMed]  [PMC]
  14. Liu Y, Zheng J, Zhao J, Yu L, Lu X, Zhu Z, et al. Magnetic resonance image biomarkers improve differentiation of benign and malignant parotid tumors through diagnostic model analysis. Oral Radiology. 2021:1-11. [PubMed]
  15. Marguelles-Bonnet RE, Carpentier P, Yung J, Defrennes D, Pharaboz C. Clinical diagnosis compared with findings of magnetic resonance imaging in 242 patients with internal derangement of the TMJ. Journal of orofacial pain. 1995;9(3). [PubMed]
  16. Eley K, McIntyre A, Watt-Smith S, Golding S. "Black bone" MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. The British journal of radiology. 2012;85(1011):272-8. [Crossref]  [PubMed]  [PMC]
  17. Vyas KS, Suchyta MA, Hunt CH, Gibreel W, Mardini S. Black Bone MRI for Virtual Surgical Planning in Craniomaxillofacial Surgery. Semin Plast Surg. 2022;36(3):192-198. Published 2022 Dec 7. [Crossref]  [PubMed]  [PMC]
  18. Van Lanen R, Colon A, Wiggins C, Hoeberigs M, Hoogland G, Roebroeck A, et al. Ultra-high field magnetic resonance imaging in human epilepsy: a systematic review. NeuroImage: Clinical. 2021;30:102602. [Crossref]  [PubMed]  [PMC]
  19. Amornvit P, Sanohkan S. The accuracy of digital face scans obtained from 3D scanners: an in vitro study. International Journal of Environmental Research and Public Health. 2019;16(24):5061. [Crossref]  [PubMed]  [PMC]
  20. Muhtar MÖ, Özkeskin SZY, Cansız E. Comparative analysis of 3D tomography based soft tissue rendering and Proface facial scanning systems in orthognathic surgery. Journal of Stomatology, Oral and Maxillofacial Surgery. 2025;126(3):102088. [Crossref]  [PubMed]
  21. Shah PB, Luximon Y, editors. Review on 3D scanners for head and face modeling. Digital Human Modeling Applications in Health, Safety, Ergonomics, and Risk Management: Ergonomics and Design: 8th International Conference, DHM 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings, Part I8; 2017: Springer. [Crossref]
  22. Rasteau S, Ernenwein D, Savoldelli C, Bouletreau P. Artificial intelligence for oral and maxillo-facial surgery: A narrative review. Journal of Stomatology, Oral and Maxillofacial Surgery. 2022;123(3):276-82. [Crossref]  [PubMed]
  23. Apell P, Eriksson H. Artificial intelligence (AI) healthcare technology innovations: the current state and challenges from a life science industry perspective. Technology Analysis & Strategic Management. 2023;35(2):179-93. [Crossref]
  24. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Medicine. 2021;13:1-17. [Crossref]  [PubMed]  [PMC]
  25. Swartout WR. Rule-based expert systems: The mycin experiments of the stanford heuristic programming project: BG Buchanan and EH Shortliffe,(addison-wesley, reading, ma, 1984); 702 pages, $40.50. Elsevier; 1985. [Link]
  26. Van Melle W. MYCIN: a knowledge-based consultation program for infectious disease diagnosis. International journal of man-machine studies. 1978;10(3):313-22. [Crossref]
  27. Mol A, van der Stelt PF. Application of digital image analysis in dental radiography for the description of periapical bone lesions: a preliminary study. IEEE transactions on biomedical engineering. 1991;38(4):357-9. [Crossref]  [PubMed]
  28. Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MSB, Maqsood A, et al. Artificial intelligence techniques: analysis, application, and outcome in dentistry-a systematic review. BioMed research international. 2021;2021(1):9751564. [Crossref]  [PubMed]  [PMC]
  29. Nakagawa Y, Ishii H, Nomura Y, Watanabe NY, Hoshiba D, Kobayashi K, et al. Third molar position: reliability of panoramic radiography. Journal of oral and maxillofacial surgery. 2007;65(7):1303-8. [Crossref]  [PubMed]
  30. Abdolali F, Zoroofi RA, Otake Y, Sato Y. Automatic segmentation of maxillofacial cysts in cone beam CT images. Computers in biology and medicine. 2016;72:108-19. [Crossref]  [PubMed]
  31. Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral radiology. 2019;35:301-7. [Crossref]  [PubMed]
  32. Kotaki S, Nishiguchi T, Araragi M, Akiyama H, Fukuda M, Ariji E, et al. Transfer learning in diagnosis of maxillary sinusitis using panoramic radiography and conventional radiography. Oral Radiology. 2023;39(3):467-74. [Crossref]  [PubMed]
  33. Ishibashi K, Ariji Y, Kuwada C, Kimura M, Hashimoto K, Umemura M, et al. Efficacy of a deep leaning model created with the transfer learning method in detecting sialoliths of the submandibular gland on panoramic radiography. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2022;133(2):238-44. [Crossref]  [PubMed]
  34. Vial A, Stirling D, Field M, Ros M, Ritz C, Carolan M, et al. The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. Translational Cancer Research. 2018;7(3). [Crossref]
  35. Miragall MF, Knoedler S, Kauke-Navarro M, Saadoun R, Grabenhorst A, Grill FD, et al. Face the future-artificial intelligence in oral and maxillofacial surgery. Journal of clinical medicine. 2023;12(21):6843. [Crossref]  [PubMed]  [PMC]
  36. Ullrich PJ, Garg S, Reddy N, Hassan A, Joshi C, Perez L, et al. The racial representation of cosmetic surgery patients and physicians on social media. Aesthetic surgery journal. 2022;42(8):956-63. [Crossref]  [PubMed]
  37. Jayalekshmy R, Unnithan JJ, Kumar AM, Majid SA. Artificial intelligence-finding new frontiers in oral and maxillofacial radiology. Journal of Dental and Orofacial Research. 2020;16(1):32-8. [Link]
  38. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbeck's archives of surgery. 2013;398:501-14. [Crossref]  [PubMed]  [PMC]
  39. Alkhayatt NM, Alzahrani HH, Ahmed S, Alotaibi BM, Alsaggaf RM, ALAlmuaysh AM, et al. Computer-assisted navigation in oral and maxillofacial surgery: A systematic review. The Saudi Dental Journal. 2024;36(3):387-94. [Crossref]  [PubMed]  [PMC]
  40. Azarmehr I, Stokbro K, Bell RB, Thygesen T. Surgical navigation: a systematic review of indications, treatments, and outcomes in oral and maxillofacial surgery. Journal of Oral and Maxillofacial Surgery. 2017;75(9):1987-2005. [Crossref]  [PubMed]
  41. Choi Y-S, Oh J-W, Lee Y, Lee D-W. Thermal changes during implant site preparation with a digital surgical guide and slot design drill: an ex vivo study using a bovine rib model. Journal of Periodontal & Implant Science. 2022;52(5):411. [Crossref]  [PubMed]  [PMC]
  42. Gargallo-Albiol J, Salomó-Coll O, Lozano-Carrascal N, Wang HL, Hernández-Alfaro F. Intra-osseous heat generation during implant bed preparation with static navigation: Multi-factor in vitro study. Clinical Oral Implants Research. 2021;32(5):590-7. [Crossref]  [PubMed]
  43. Gargallo-Albiol J, Barootchi S, Salomó-Coll O, Wang H-l. Advantages and disadvantages of implant navigation surgery. A systematic review. Annals of Anatomy-Anatomischer Anzeiger. 2019;225:1-10. [Crossref]  [PubMed]
  44. Farley NE, Kennedy K, McGlumphy EA, Clelland NL. Split-mouth comparison of the accuracy of computer-generated and conventional surgical guides. International Journal of Oral & Maxillofacial Implants. 2013;28(2). [Crossref]  [PubMed]
  45. Younes F, Cosyn J, De Bruyckere T, Cleymaet R, Bouckaert E, Eghbali A. A randomized controlled study on the accuracy of free-handed, pilot-drill guided and fully guided implant surgery in partially edentulous patients. Journal of Clinical Periodontology. 2018;45(6):721-32. [Crossref]  [PubMed]
  46. Arısan V, Karabuda CZ, Özdemir T. Implant surgery using bone-and mucosa-supported stereolithographic guides in totally edentulous jaws: surgical and post-operative outcomes of computer-aided vs. standard techniques. Clinical oral implants research. 2010;21(9):980-8. [Crossref]  [PubMed]
  47. Vercruyssen M, Laleman I, Jacobs R, Quirynen M. Computer-supported implant planning and guided surgery: a narrative review. Clinical oral implants research. 2015;26:69-76. [Crossref]  [PubMed]
  48. Amorfini L, Migliorati M, Drago S, Silvestrini-Biavati A. Immediately loaded implants in rehabilitation of the maxilla: A two-year randomized clinical trial of guided surgery versus standard procedure. Clinical implant dentistry and related research. 2017;19(2):280-95. [Crossref]  [PubMed]
  49. Anand M, Panwar S. Role of navigation in oral and maxillofacial surgery: a surgeon's perspectives. Clinical, cosmetic and investigational dentistry. 2021:127-39. [Crossref]  [PubMed]  [PMC]
  50. Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health. 2019;19:1-8. [Crossref]  [PubMed]  [PMC]
  51. Eijlers R, Dierckx B, Staals LM, Berghmans JM, van der Schroeff MP, Strabbing EM, et al. Virtual reality exposure before elective day care surgery to reduce anxiety and pain in children: A randomised controlled trial. European Journal of Anaesthesiology| EJA. 2019;36(10):728-37. [Crossref]  [PubMed]  [PMC]
  52. Hu-Au E, Lee JJ. Virtual reality in education: a tool for learning in the experience age. International Journal of Innovation in Education. 2017;4(4):215-26. [Crossref]
  53. Pulijala Y, Ma M, Pears M, Peebles D, Ayoub A. Effectiveness of immersive virtual reality in surgical training-a randomized control trial. Journal of Oral and Maxillofacial Surgery. 2018;76(5):1065-72. [Crossref]  [PubMed]
  54. Correa CG, Machado MAdAM, Ranzini E, Tori R, Nunes FdLS. Virtual Reality simulator for dental anesthesia training in the inferior alveolar nerve block. Journal of Applied Oral Science. 2017;25(4):357-66. [Crossref]  [PubMed]  [PMC]
  55. Mladenovic R, Pereira L, Mladenovic K, Videnovic N, Bukumiric Z, Mladenovic J. Effectiveness of augmented reality mobile simulator in teaching local anesthesia of inferior alveolar nerve block. Journal of dental education. 2019;83(4):423-8. [Crossref]  [PubMed]
  56. Huang T-K, Yang C-H, Hsieh Y-H, Wang J-C, Hung C-C. Augmented reality (AR) and virtual reality (VR) applied in dentistry. The Kaohsiung journal of medical sciences. 2018;34(4):243-8. [Crossref]  [PubMed]  [PMC]
  57. Yu H, Shen SG, Wang X, Zhang L, Zhang S. The indication and application of computer-assisted navigation in oral and maxillofacial surgery-Shanghai's experience based on 104 cases. Journal of Cranio-Maxillofacial Surgery. 2013;41(8):770-4. [Crossref]  [PubMed]
  58. Chen G, Zeng W, Yin H, Yu Y, Ju R, Tang W. The preliminary application of augmented reality in unilateral orbitozygomatic maxillary complex fractures treatment. Journal of Craniofacial Surgery. 2020;31(2):542-8. [Crossref]  [PubMed]
  59. Kim S-H, Lee S-J, Choi M-H, Yang HJ, Kim J-E, Huh K-H, et al. Quantitative augmented reality-assisted free-hand orthognathic surgery using electromagnetic tracking and skin-attached dynamic reference. Journal of Craniofacial Surgery. 2020;31(8):2175-81. [Crossref]  [PubMed]
  60. Al-Halabi MN, Bshara N, AlNerabieah Z. Effectiveness of audio visual distraction using virtual reality eyeglasses versus tablet device in child behavioral management during inferior alveolar nerve block. Anaesthesia, Pain & Intensive Care. 2018:55-61. [Link]
  61. Aminabadi NA, Erfanparast L, Sohrabi A, Oskouei SG, Naghili A. The impact of virtual reality distraction on pain and anxiety during dental treatment in 4-6 year-old children: a randomized controlled clinical trial. Journal of dental research, dental clinics, dental prospects. 2012;6(4):117. [PubMed]
  62. Panda A. Effect of virtual reality distraction on pain perception during dental treatment in children. Int J oral care res. 2017;5(4):278-81. [Crossref]
  63. Zink AG, Molina EC, Diniz MB, Santos MTBR, Guaré RO. Communication application for use during the first dental visit for children and adolescents with autism spectrum disorders. Pediatric dentistry. 2018;40(1):18-22. [PubMed]
  64. Sreehitha V. Impact of 3D printing in automotive industry. International Journal of Mechanical and Production Engineering. 2017;5(2):91-4. [Link]
  65. Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2015;229(11):2132-47. [Crossref]
  66. Petrick IJ, Simpson TW. 3D printing disrupts manufacturing: how economies of one create new rules of competition. Research-Technology Management. 2013;56(6):12-6. [Crossref]
  67. Ventola CL. Medical applications for 3D printing: current and projected uses. Pharmacy and Therapeutics. 2014;39(10):704. [PubMed]
  68. Gibson I, Rosen D, Stucker B, Gibson I, Rosen D, Stucker B. Direct digital manufacturing. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. 2015:375-97. [Crossref]
  69. Wohlers T. Wohlers report 2019: 3D printing and additive manufacturing state of the industry. (No Title). 2019. [Link]
  70. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomedical engineering online. 2016;15:1-21. [Crossref]  [PubMed]  [PMC]
  71. Louvrier A, Marty P, Barrabé A, Euvrard E, Chatelain B, Weber E, et al. How useful is 3D printing in maxillofacial surgery? Journal of stomatology, oral and maxillofacialsurgery. 2017;118(4):206-12. [Crossref]  [PubMed]
  72. Choi JW, Kim N. Clinical application of three-dimensional printing technology in craniofacial plastic surgery. Archives of plastic surgery. 2015;42(03):267-77. [Crossref]  [PubMed]  [PMC]
  73. Zoabi A, Redenski I, Oren D, Kasem A, Zigron A, Daoud S, et al. 3D printing and virtual surgical planning in oral and maxillofacial surgery. Journal of Clinical Medicine. 2022;11(9):2385. [Crossref]  [PubMed]  [PMC]
  74. Vale F, Scherzberg J, Cavaleiro J, Sanz D, Caramelo F, Maló L, et al. 3D virtual planning in orthognathic surgery and CAD/CAM surgical splints generation in one patient with craniofacial microsomia: a case report. Dental press journal of orthodontics. 2016;21:89-100. [Crossref]  [PubMed]  [PMC]
  75. Jung YG, Park H, Seo J. Patient-specific 3-dimensional printed models for planning nasal osteotomy to correct nasal deformities due to trauma. OTO open. 2020;4(2):2473974X20924342. [Crossref]  [PubMed]  [PMC]
  76. Kang S, Kwon J, Ahn CJ, Esmaeli B, Kim GB, Kim N, et al. Generation of customized orbital implant templates using 3-dimensional printing for orbital wall reconstruction. Eye. 2018;32(12):1864-70. [Crossref]  [PubMed]  [PMC]
  77. Di Rosa L. 3D Printing in Maxillofacial Surgery. 3D Printing in Plastic Reconstructive and Aesthetic Surgery: A Guide for Clinical Practice: Springer; 2022:75-84. [Crossref]
  78. Cho HR, Roh TS, Shim KW, Kim YO, Lew DH, Yun IS. Skull reconstruction with custom made three-dimensional titanium implant. Archives of Craniofacial surgery. 2015;16(1):11. [Crossref]  [PubMed]  [PMC]
  79. Mendez BM, Chiodo MV, Patel PA. Customized "in-office" three-dimensional printing for virtual surgical planning in craniofacial surgery. Journal of Craniofacial Surgery. 2015;26(5):1584-6. [Crossref]  [PubMed]
  80. Fiaschi P, Pavanello M, Imperato A, Dallolio V, Accogli A, Capra V, et al. Surgical results of cranioplasty with a polymethylmethacrylate customized cranial implant in pediatric patients: a single-center experience. Journal of Neurosurgery: Pediatrics. 2016;17(6):705-10. [Crossref]  [PubMed]
  81. Cabalag MS, Chae MP, Miller GS, Rozen WM, Hunter-Smith DJ. Use of three-dimensional printed'haptic'models for preoperative planning in an Australian plastic surgery unit. ANZ journal of surgery. 2017;87(12):1057-9. [Crossref]  [PubMed]
  82. Rojas YA, Sinnott C, Colasante C, Samas J, Reish RG. Facial implants: controversies and criticism. A comprehensive review of the current literature. Plastic and Reconstructive Surgery. 2018;142(4):991-9. [Crossref]  [PubMed]
  83. Yaremchuk MJ. Atlas of Facial Implants E-Book: Elsevier Health Sciences; 2019. [Link]
  84. Yim HW, Nguyen A, Kim YK. Facial contouring surgery with custom silicone implants based on a 3D prototype model and CT-scan: a preliminary study. Aesthetic plastic surgery. 2015;39:418-24. [Crossref]  [PubMed]
  85. Mercuri L. Alloplastic temporomandibular joint replacement: rationale for the use of custom devices. International journal of oral and maxillofacial surgery. 2012;41(9):1033-40. [Crossref]  [PubMed]
  86. Ramos AM, Mesnard M. The stock alloplastic temporomandibular joint implant can influence the behavior of the opposite native joint: A numerical study. Journal of Cranio-Maxillofacial Surgery. 2015;43(8):1384-91. [Crossref]  [PubMed]
  87. Ramos A, Mesnard M. Comparison of load transfers in TMJ replacement using a standard and a custom-made temporal component. Journal of Cranio-Maxillofacial Surgery. 2014;42(8):1766-72. [Crossref]  [PubMed]
  88. Belvedere C, Siegler S, Fortunato A, Caravaggi P, Liverani E, Durante S, et al. New comprehensive procedure for custom-made total ankle replacements: medical imaging, joint modeling, prosthesis design, and 3D printing. Journal of Orthopaedic Research®. 2019;37(3):760-8. [Crossref]  [PubMed]
  89. Brown Z, Sarrami S, Perez D. Will they fit? Determinants of the adaptability of stock TMJ prostheses where custom TMJ prostheses were utilized. International Journal of Oral and Maxillofacial Surgery. 2021;50(2):220-6. [Crossref]  [PubMed]
  90. Aagaard E, Thygesen T. A prospective, single-centre study on patient outcomes following temporomandibular joint replacement using a custom-made Biomet TMJ prosthesis. International journal of oral and maxillofacial surgery. 2014;43(10):1229-35. [Crossref]  [PubMed]
  91. Festa F, Galluccio G. Clinical and experimental study of TMJ distraction: Preliminary results. CRANIO®. 1998;16(1):26-34. [Crossref]  [PubMed]
  92. Mańkowski J, Piękoś J, Dominiak K, Klukowski P, Fotek M, Zawisza M, et al. A mandible with the temporomandibular joint-a new FEM model dedicated to strength and fatigue calculations of bonding elements used in fracture and defect surgery. Materials. 2021;14(17):5031. [Crossref]  [PubMed]  [PMC]
  93. Wilken N, Warburton G. Reconstruction of the mandibular condyle due to degenerative disease. Journal of Oral Biology and Craniofacial Research. 2023;13(2):367-72. [Crossref]  [PubMed]  [PMC]
  94. Kim HY, Jung BK, Lew DH, Lee DW. Autologous fat graft in the reconstructed breast: fat absorption rate and safety based on sonographic identification. Archives of plastic surgery. 2014;41(06):740-7. [Crossref]  [PubMed]  [PMC]
  95. Ragnell A. The secondary contracting tendency of free skin grafts: an experimental investigation on animals. British Journal of Plastic Surgery. 1952;5(1):6-24. [Crossref]  [PubMed]
  96. Ziade G, Karam D. Emulsified fat and nanofat for the treatment of dark circles. Dermatologic Therapy. 2020;33(6):e14100. [Crossref]  [PubMed]
  97. Kamat P, Frueh FS, McLuckie M, Sanchez-Macedo N, Wolint P, Lindenblatt N, et al. Adipose tissue and the vascularization of biomaterials: stem cells, microvascular fragments and nanofat-a review. Cytotherapy. 2020;22(8):400-11. [Crossref]  [PubMed]
  98. Madenci E, Guven I. The finite element method and applications in engineering using ANSYS®: Springer; 2015. [Crossref]  [PMC]
  99. Mehta F, Joshi H. Finite element method: An overview.IOSR J Dent Med Sci. 2016;15(3):38-41. [Link]
  100. Trivedi S. Finite element analysis: A boon to dentistry. Journal of oral biology and craniofacial research. 2014;4(3):200-3. [Crossref]  [PubMed]  [PMC]
  101. Scarano A, Lorusso F, Santos de Oliveira P, Kunjalukkal Padmanabhan S, Licciulli A. Hydroxyapatite block produced by sponge replica method: mechanical, clinical and histologic observations. Materials. 2019;12(19):3079. [Crossref]  [PubMed]  [PMC]
  102. Dogru SC, Cansiz E, Arslan YZ. A review of finite element applications in oral and maxillofacial biomechanics. Journal of mechanics in medicine and biology. 2018;18(02):1830002. [Crossref]
  103. 103. Sicher, Julius Tandler. Publisher, J. Springer, 1928. Original from, University of Chicago. Digitized, Sep 15, 2010. [Link]
  104. Patterson R. The Le Fort fractures: René Le Fort and his work in anatomical pathology. Canadian Journal of surgery Journal Canadien de Chirurgie. 1991;34(2):183-4. [PubMed]
  105. Perestrelo PFM, de Oliveira JAGP, Noritomi PY, da Silva JVL. Application of a virtual cranial model in a trauma simulation. Procedia CIRP. 2016;49:19-22. [Crossref]
  106. Aquilina P, Chamoli U, Parr WC, Clausen PD, Wroe S. Finite element analysis of three patt6erns of internal fixation of fractures of the mandibular condyle. British Journal of Oral and Maxillofacial Surgery. 2013;51(4):326-31. [Crossref]  [PubMed]
  107. Darwich MA, Albogha MH, Abdelmajeed A, Darwich K. Assessment of the biomechanical performance of 5 plating techniques in fixation of mandibular subcondylar fracture using finite element analysis. Journal of Oral and Maxillofacial Surgery. 2016;74(4):794. e1-. e8. [Crossref]  [PubMed]
  108. Larson BE, Lee N-K, Jang M-J, Jo D-W, Yun P-Y, Kim Y-K. Comparative evaluation of the sliding plate technique for fixation of a sagittal split ramus osteotomy: finite element analysis. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2017;123(5):e148-e52. [Crossref]  [PubMed]
  109. Oguz Y, Uckan S, Ozden AU, Uckan E, Eser A. Stability of locking and conventional 2.0-mm miniplate/screw systems after sagittal split ramus osteotomy: finite element analysis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2009;108(2):174-7. [Crossref]  [PubMed]
  110. Tamura N, Takaki T, Takano N, Shibahara T. Three-dimensional finite element analysis of bone fixation in bilateral sagittal split ramus osteotomy using individual models. The Bulletin of Tokyo Dental College. 2018;59(2):67-78. [Crossref]  [PubMed]
  111. Ghorashi SM, Keshavarzi MM, Damercheli S, Parhiz A. The comparison of three different fixation methods on bilateral sagittal split ramus osteotomy mandibular on a 3D of fully modelled mandible by the finite element method. Journal of Craniomaxillofacial Research. 2019:113-21. [Crossref]
  112. Hassan MK, Ring M, Stassen LF. A finite element analysis study comparing 3 internal fixation techniques in mandibular sagittal split osteotomy. International Journal of Otolaryngology and Head & Neck Surgery. 2018;7(5):298-311. [Crossref]
  113. Stróżyk P, Nowak R. Finite Elements Method Analysis of Fixation for Bilateral Sagital Split Osteotomy. Dental and Medical Problems. 2011;48(2):157-64. [Link]
  114. Dabiri D, Harper DE, Kapila Y, Kruger GH, Clauw DJ, Harte S. Applications of sensory and physiological measurement in oral-facial dental pain. Special Care in Dentistry. 2018;38(6):395-404. [Crossref]  [PubMed]  [PMC]
  115. Kleinknecht RA, Klepac RK, Alexander LD. Origins and characteristics of fear of dentistry. The Journal of the American Dental Association. 1973;86(4):842-8. [Crossref]  [PubMed]
  116. Ballard BE. Biopharmaceutical considerations in subcutaneous and intramuscular drug administration. Journal of Pharmaceutical Sciences. 1968;57(3):357-78. [Crossref]  [PubMed]
  117. Meechan J, Howlett P, Smith B. Factors influencing the discomfort of intraoral needle penetration. Anesthesia progress. 2005;52(3):91-4. [Crossref]  [PubMed]
  118. Hochman M, Chiarello D, Hochman CB, Lopatkin R, Pergola S. Computerized local ane8sthetic delivery vs. traditional syringe technique. Subjective pain response. The New York state dental journal. 1997;63(7):24-9. [PubMed]
  119. Saloum FS, Baumgartner JC, Marshall G, Tinkle J. A clinical comparison of pain perception to the Wand and a traditional syringe. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2000;89(6):691-5. [Crossref]  [PubMed]
  120. Nusstein J, Lee S, Reader A, Beck M, Weaver J. Injection pain and postinjection pain of the anterior middle superior alveolar injection administered with the Wand® or conventional syringe. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2004;98(1):124-31. [Crossref]  [PubMed]
  121. Kämmerer P, Schiegnitz E, Von Haussen T, Shabazfar N, Kämmerer P, Willershausen B, et al. Clinical efficacy of a computerised device (STA™) and a pressure syringe (VarioJect INTRA™) for intraligamentary anaesthesia. European Journal of Dental Education. 2015;19(1):16-22. [Crossref]  [PubMed]
  122. Patini R, Staderini E, Cantiani M, Camodeca A, Guglielmi F, Gallenzi P. Dental anaesthesia for children-effects of a computer-controlled delivery system on pain and heart rate: a randomised clinical trial. British Journal of Oral and Maxillofacial Surgery. 2018;56(8):744-9. [Crossref]  [PubMed]
  123. Berrendero S, Hriptulova O, Salido M, Martínez-Rus F, Pradíes G. Comparative study of conventional anesthesia technique versus computerized system anesthesia: a randomized clinical trial. Clinical Oral Investigations. 2021;25:2307-15. [Crossref]  [PubMed]
  124. Grace E, Barnes D, Reid B, Flores M, George D. Computerized local dental anesthetic systems: patient and dentist satisfaction. Journal of dentistry. 2003;31(1):9-12. [Crossref]  [PubMed]