The Effect of Bilateral Transcutenous Auricular Vagus Nerve Stimulation on Working Memory and Neuropsychiatric Profile

Selin YILMAZa , Selen GÜR ÖZMENb

aBahçeşehir University Faculty of Medicine, Department of Neuroscience, İstanbul, Türkiye
bBahçeşehir University Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, İstanbul, Türkiye

ABSTRACT
This review explores the impact of transcutaneous auricular vagus nerve stimulation (taVNS) on cognitive performance, focusing on individual differences in response. Originating as an epilepsy treatment, taVNS has shown promise in enhancing cognitive functions by stimulating the vagus nerve and releasing norepinephrine. The paper investigates attachment styles, personality traits, and psychological symptoms as potential influencers of taVNS efficacy by analyzing the attachment style theory, psychological assessment, and big five personality traits. The review hypothesizes that securely attached individuals may benefit more from taVNS due to adaptive stress responses. At the same time, specific personality traits such as conscientiousness may also play a role, whereas people with specific psychological symptoms would benefit less from taVNS. The findings contribute to understanding nuanced mechanisms underlying individual variations in taVNS outcomes, facilitating the development of personalized treatment approaches based on attachment profiles and personality traits.
Keywords: taVNS; cognitive performance; attachment styles; personality traits; psychological symptoms; individual differences

Referanslar

  1. Vonck K, Raedt R, Naulaerts J, Vogelaere P, Thiery E, Van Roost D, et al. Vagus nerve stimulation... and cognition? A review. J Clin Exp Neuropsychol. 2014;36(4):423-41.
  2. Sun L, Peräkylä J, Holm K. Vagus nerve stimulation improves working memory performance. J Clin Exp Neuropsychol. 2017;39(2):202-8. [Crossref]  [PubMed]
  3. Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat. 2011;42(4):288-96. [Crossref]  [PubMed]
  4. Krahl SE. Vagus nerve stimulation for epilepsy: A review of the peripheral mechanisms. Surg Neurol Int. 2012;3(Suppl 1):S47-52. [Crossref]  [PubMed]  [PMC]
  5. Nemeroff CB, Mayberg HS, Krahl SE, McNamara J, Frazer A, Henry TR, et al. VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology. 2006;31(7):1345-55. [Crossref]  [PubMed]
  6. Ghacibeh GA, Shenker JI, Shenal B, Uthman BM, Heilman KM. The influence of vagus nerve stimulation on memory. Cogn Behav Neurol. 2006;19(3):119-22. [Crossref]  [PubMed]
  7. Boon P, Moors I, De Herdt V, Vonck K. Vagus nerve stimulation and cognition. Seizure. 2006;15(4):259-63. [Crossref]  [PubMed]
  8. Dell P, Olson R. Projections thalamiques, corticales et cérébelleuses des afférences viscérales vagales [Thalamic, cortical and cerebellar projections of vagal visceral afferences]. C R Seances Soc Biol Fil. 1951;145(13-14):1084-8. Undetermined Language.
  9. Lovallo WR. Do low levels of stress reactivity signal poor states of health? Biol Psychol. 2011;86(2):121-8. [Crossref]  [PubMed]  [PMC]
  10. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85(1-3):1-17. [Crossref]  [PubMed]
  11. Yakunina N, Kim SS, Nam EC. Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI. Neuromodulation. 2017;20(3):290-300. [Crossref]  [PubMed]
  12. Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, et al. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci. 2019;13:854. [Crossref]  [PubMed]  [PMC]
  13. Meints SM, Garcia RG, Schuman-Olivier Z, Datko M, Desbordes G, Cornelius M, et al. The Effects of Combined Respiratory-Gated Auricular Vagal Afferent Nerve Stimulation and Mindfulness Meditation for Chronic Low Back Pain: A Pilot Study. Pain Med. 2022;23(9):1570-81. [Crossref]  [PubMed]  [PMC]
  14. Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimul. 2018;11(3):492-500. [Crossref]  [PubMed]  [PMC]
  15. Broncel A, Bocian R, Kłos-Wojtczak P, Kulbat-Warycha K, Konopacki J. Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders. Brain Res Bull. 2020;155:37-47. [Crossref]  [PubMed]
  16. Vandewalle G, Maquet P, Dijk DJ. Light as a modulator of cognitive brain function. Trends Cogn Sci. 2009;13(10):429-38. [Crossref]  [PubMed]
  17. Van Leusden JW, Sellaro R, Colzato LS. Transcutaneous Vagal Nerve Stimulation (tVNS): a new neuromodulation tool in healthy humans? Front Psychol. 2015;6:102. [Crossref]  [PubMed]  [PMC]
  18. Hansen P, Mladenović N, Brimberg J, Pérez JAM. Variable neighborhood search. In: Gendreau M, Potvin JY, eds. Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 272. Springer, Cham; 2019. p.57-97. [Crossref]
  19. Ogbonnaya S, Kaliaperumal C. Vagal nerve stimulator: Evolving trends. J Nat Sci Biol Med. 2013;4(1):8-13. [Crossref]  [PubMed]  [PMC]
  20. Sun Y, Chen J, Fang T, Wan L, Shi X, Wang J, et al. Vagus Nerve Stimulation Therapy for the Treatment of Seizures in Refractory Postencephalitic Epilepsy: A Retrospective Study. Front Neurosci. 2021;15:685685. [Crossref]  [PubMed]  [PMC]
  21. Vonck K, Raedt R, Naulaerts J, De Vogelaere F, Thiery E, Van Roost D, et al. Vagus nerve stimulation…25 years later! What do we know about the effects on cognition? Neurosci Biobehav Rev. 2014;45:63-71. [Crossref]  [PubMed]
  22. Chiesa A, Calati R, Serretti A. Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clin Psychol Rev. 2011;31(3):449-64. [Crossref]  [PubMed]
  23. Baddeley AD, Hitch G. Working Memory. Psychol Learn Motiv. 1974;8:47-89. [Crossref]
  24. Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7(6):871-7. [Crossref]  [PubMed]
  25. Schachter SC. Therapeutic effects of vagus nerve stimulation in epilepsy and implications for sudden unexpected death in epilepsy. Clin Auton Res. 2006;16(1):29-32. [Crossref]  [PubMed]
  26. Steenbergen L, Sellaro R, Stock AK, Verkuil B, Beste C, Colzato LS. RETRACTED: Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur Neuropsychopharmacol. 2015;25(6):773-8. [Crossref]  [PubMed]
  27. Colzato LS, Wolters G, Peifer C. Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience. Exp Brain Res. 2018;236(1):253-7. [Crossref]  [PubMed]
  28. Lindley K. Effect of Transcutaneous Vagus Nerve Stimulation on Sports Performance. Arizona State University; 2019.
  29. Sun L, Peräkylä J, Holm K, Haapasalo J, Lehtimäki K, Ogawa KH, et al. Vagus nerve stimulation improves working memory performance. J Clin Exp Neuropsychol. 2017;39(10):954-64. [Crossref]  [PubMed]
  30. D'Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol. 2015;66:115-42. [Crossref]  [PubMed]  [PMC]
  31. Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol. 2012;63:1-29. [Crossref]  [PubMed]
  32. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA. 1992;267(9):1244-52. Erratum in: JAMA 1992;268(2):200. [Crossref]  [PubMed]
  33. Amabebe E, Anumba DOC. Psychosocial Stress, Cortisol Levels, and Maintenance of Vaginal Health. Front Endocrinol (Lausanne). 2018;9:568. [Crossref]  [PubMed]  [PMC]
  34. Schoofs D, Preuss D, Wolf OT. Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology. 2008;33(5):643-53. [Crossref]  [PubMed]
  35. Arnsten AF. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci. 2015;18(10):1376-85. [Crossref]  [PubMed]  [PMC]
  36. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med. 2009;37(2):141-53. [Crossref]  [PubMed]
  37. Koenig J, Thayer JF, Kaess M. Psychophysiological concomitants of personality pathology in development. Curr Opin Psychol. 2021;37:129-33. [Crossref]  [PubMed]
  38. Koenig J, Kemp AH, Beauchaine TP, Thayer JF, Kaess M. Depression and resting state heart rate variability in children and adolescents - A systematic review and meta-analysis. Clin Psychol Rev. 2016;46:136-50. [Crossref]  [PubMed]
  39. Ainsworth MDS. The Bowlby-Ainsworth attachment theory. Behavioral and Brain Sciences. 1978;1(3):436-8. [Crossref]
  40. Cassidy J, Shaver PR. Handbook of attachment: Theory, research, and clinical applications. The Guilford Press; 1999.
  41. Diamond LM, Fagundes CP. Psychobiological research on attachment. Journal of Social and Personal Relationships; 2010;27(2):218-25. [Crossref]
  42. Suryanto YI, Pramudita EA, Nugraha LN. The Autonomic Nervous System and Big Five Personality. In BIO Web of Conferences. EDP Sciences. 2022;49:03002. [Crossref]
  43. Siegman AW, Smith TW. Anger, Hostility, and the Heart. Psychology Press; 2013. [Crossref]  [PubMed]
  44. Ruiz JM, Uchino BN, Smith TW. Hostility and sex differences in the magnitude, duration, and determinants of heart rate response to forehead cold pressor: Parasympathetic aspects of risk. Int J Psychophysiol. 2006;60(3):274-83. [Crossref]  [PubMed]