The Effects of Diet Content on the Vagus Nerve

geleneksel tip-5-2-wos-kapak

İlayda ÖZTÜRK ALTUNCEVAHİRa

aBahçeşehir University Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul, Türkiye

ABSTRACT
The relationship between diet and the vagus nerve has gained attention, particularly in obesity treatment research. When stimulated, vagus nerve reduces inflammatory responses and supports gut health. Studies indicate that Mediterranean diet, foods that rich in polyphenols and choline, and omega-3 fatty acids positively influence vagal tone. Sodium intake is another dietary habit that needs to be decided because its effects on vagal tone. The complex dynamics between the vagus nerve and sugar consumption are subject to ongoing study. While trans fatty acids negatively impact vagal tone, a low sodium intake affects vagus nerve functions as well. Foods recommended for vagal tone support include those rich in choline like; eggs, red meat, fish. Blueberries, healthy fats, and probiotics are also considered as vagal tone friendly foods. Supporting the vagus nerve is closely linked to maintaining good gut health. Engaging in stress-relief activities alongside a balanced diet enhances overall vagal function.
Keywords: Vagus nevre; choline; obesity; Mediterranean diet

Referanslar

  1. Challet E. The circadian regulation of food intake. Nat Rev Endocrinol. 2019;15(7):393-405. [Crossref]  [PubMed]
  2. Kenny BJ, Bordoni B. Neuroanatomy, cranial nerve 10 (vagus nerve). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2018.
  3. Mandalaneni K, Rayi A. Vagus Nerve Stimulator. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021.
  4. Tindle J, Tadi P. Neuroanatomy, parasympathetic nervous system. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021.
  5. Tran N, Zhebrak M, Yacoub C, Pelletier J, Hawley D. The gut-brain relationship: Investigating the effect of multispecies probiotics on anxiety in a randomized placebo-controlled trial of healthy young adults. J Affect Disord. 2019;252:271-7. [Crossref]  [PubMed]
  6. Berthoud HR, Neuhuber WL. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci. 2019;1454(1):42-55. [Crossref]  [PubMed]  [PMC]
  7. Dolphin H, Dukelow T, Finucane C, Commins S, McElwaine P, Kennelly SP. "The Wandering Nerve Linking Heart and Mind" - The Complementary Role of Transcutaneous Vagus Nerve Stimulation in Modulating Neuro-Cardiovascular and Cognitive Performance. Front Neurosci. 2022;16:897303. [Crossref]  [PubMed]  [PMC]
  8. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry. 2018;9:44. [Crossref]  [PubMed]  [PMC]
  9. Thompson SL, O'Leary GH, Austelle CW, Gruber E, Kahn AT, Manett AJ, et al. A Review of Parameter Settings for Invasive and Non-invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Front Neurosci. 2021;15:709436. [Crossref]  [PubMed]  [PMC]
  10. Bravo-Iñiguez CE, Fritz JR, Shukla S, Sarangi S, Thompson DA, Amin SA, et al. Vagus nerve stimulation primes platelets and reduces bleeding in hemophilia A male mice. Nature Communications. 2023;14(1):3122. [Crossref]  [PubMed]  [PMC]
  11. Pardo JV, Sheikh SA, Kuskowski MA, Surerus-Johnson C, Hagen MC, Lee JT, et al. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes (Lond). 2007;31(11):1756-9. [Crossref]  [PubMed]  [PMC]
  12. Burneo JG, Faught E, Knowlton R, Morawetz R, Kuzniecky R. Weight loss associated with vagus nerve stimulation. Neurology. 2002;59(3):463-4. [Crossref]  [PubMed]
  13. Bodenlos JS, Kose S, Borckardt JJ, Nahas Z, Shaw D, O'Neil PM, et al. Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite. 2007;48(2):145-53. [Crossref]  [PubMed]
  14. Li H, Zhang JB, Xu C, Tang QQ, Shen WX, Zhou JZ, Chen JD, Wang YP. Effects and mechanisms of auricular vagus nerve stimulation on high-fat-diet--induced obese rats. Nutrition. 2015;31(11-12):1416-22.Erratum in: Nutrition. 2016;32(1):156. Han, Li; Jian-Bin, Zhang; Chen, Xu; Qing-Qing, Tang; Wei-Xing, Shen; Jing-Zhu, Zhou; Jian-De, Chen; and Yin-Ping, Wang [Corrected to Li, Han; Zhang, Jian-Bin; Xu, Chen; Tang, Qing-Qing; Shen, Wei-Xing; Zhou, Jing-Zhu; Chen, Jian-De; and Wang, Yin-Ping]. [Crossref]  [PubMed]
  15. Loper H, Leinen M, Bassoff L, Sample J, Romero-Ortega M, Gustafson KJ, et al. Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety. Sci Rep. 2021;11(1):10394. [Crossref]  [PubMed]  [PMC]
  16. Punjabi M, Arnold M, Geary N, Langhans W, Pacheco-López G. Peripheral glucagon-like peptide-1 (GLP-1) and satiation. Physiol Behav. 2011;105(1):71-6. [Crossref]  [PubMed]
  17. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101(3):515-20. [Crossref]  [PubMed]  [PMC]
  18. Talsania T, Anini Y, Siu S, Drucker DJ, Brubaker PL. Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice. Endocrinology. 2005;146(9):3748-56. [Crossref]  [PubMed]
  19. Huang F, Dong J, Kong J, Wang H, Meng H, Spaeth RB, et.al. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement Altern Med. 2014;14:203. Erratum in: BMC Complement Altern Med. 2016;16(1):218. [Crossref]  [PubMed]  [PMC]
  20. Young HA, Benton D. Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health? Behav Pharmacol. 2018;29(2 and 3-Spec Issue):140-51. [Crossref]  [PubMed]  [PMC]
  21. Choline - Health Professional Fact Sheet [Internet]. Available from: [Link]
  22. McNeely JD, Windham BG, Anderson DE. Dietary sodium effects on heart rate variability in salt sensitivity of blood pressure. Psychophysiology. 2008;45(3):405-11. [Crossref]  [PubMed]  [PMC]
  23. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844-51. Erratum in: Nat Immunol. 2005;6(9):954. [Crossref]  [PubMed]
  24. Giebelen IA, van Westerloo DJ, LaRosa GJ, de Vos AF, van der Poll T. Local stimulation of alpha7 cholinergic receptors inhibits LPS-induced TNF-alpha release in the mouse lung. Shock. 2007;28(6):700-3. [Crossref]  [PubMed]
  25. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9(5-8):125-34. [Crossref]  [PubMed]  [PMC]
  26. Wu H, Li L, Su X. Vagus nerve through α7 nAChR modulates lung infection and inflammation: models, cells, and signals. Biomed Res Int. 2014;2014:283525. [Crossref]  [PubMed]  [PMC]
  27. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med. 2005;17;202(8):1023-9. [Crossref]  [PubMed]  [PMC]
  28. Liu WW, Bohórquez DV. The neural basis of sugar preference. Nat Rev Neurosci. 2022;23(10):584-95. [Crossref]  [PubMed]  [PMC]
  29. Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361(6408):eaat5236. [Crossref]  [PubMed]  [PMC]
  30. Buchanan KL, Rupprecht LE, Kaelberer MM, Sahasrabudhe A, Klein ME, Villalobos JA, et al. The preference for sugar over sweetener depends on a gut sensor cell. Nat Neurosci. 2022;25(2):191-200. [Crossref]  [PubMed]  [PMC]
  31. Cannon WB, Washburn AL. An Explanation of Hunger. Am. J. Physiol. Content. 1912;29(5):441-54. [Crossref]
  32. Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, et al. A Neural Circuit for Gut-Induced Reward. Cell. 2018;175(3):665-78.e23. Erratum in: Cell. 2018;175(3):887-8. [Crossref]  [PubMed]  [PMC]
  33. Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol. 2022;13:1015175. [Crossref]  [PubMed]  [PMC]
  34. Jacobson A, Yang D, Vella M, Chiu IM. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 2021;14(3):555-65. [Crossref]  [PubMed]  [PMC]
  35. Arneth BM. Gut-brain axis biochemical signalling from the gastrointestinal tract to the central nervous system: gut dysbiosis and altered brain function. Postgrad Med J. 2018;94(1114):446-52. [Crossref]  [PubMed]
  36. Bonaz B, Sinniger V, Pellissier S. Therapeutic potential of vagus nerve stimulation for inflammatory bowel diseases. Front Neurosci. 2021;15:650971. [Crossref]  [PubMed]  [PMC]
  37. Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018;12:49. [Crossref]  [PubMed]  [PMC]
  38. Han Y, Wang B, Gao H, He C, Hua R, Liang C, et al. Vagus Nerve and Underlying Impact on the Gut Microbiota-Brain Axis in Behavior and Neurodegenerative Diseases. J Inflamm Res. 2022;15:6213-30. [Crossref]  [PubMed]  [PMC]