The Effects of Microplastics on Human Health: At the Cellular Levelv

Melis YILMAZa , Ekin YAYb
aİstanbul Medipol University Faculty of Dentistry, Department of Periodontology, İstanbul, Türkiye
bPrivate Periodontist, İstanbul, Türkiye

Yılmaz M, Yay E. The effects of microplastics on human health: At the cellular level. In: Toygar H, Balcı N, eds. Exposure to Microplastics in Life and Dentistry. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.24-30.

ABSTRACT
In recent years, there has been significant attention given to microplastics (MPs) due to their prevalent presence in the environment. The increasing concern revolves around the environmental pollution caused by microplastics (MPs) and their potential impact on aquatic and terrestrial ecosystems, as well as human health. The primary exposure routes of individuals to microplastics are commonly known as dermal contact, ingestion, and inhalation. This section aims to conduct a comprehensive review of the literature by examining the cellular-level effects of microplastics on human health.

Keywords: Microplastics; environmental exposure

Referanslar

  1. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ. 2020;702:134455. [Crossref]  [PubMed]
  2. Yee MS, Hii LW, Looi CK, Lim WM, Wong SF, Kok YY, Tan BK, Wong CY, Leong CO. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials (Basel). 2021;11(2):496. [Crossref]  [PubMed]  [PMC]
  3. Stock V, Böhmert L, Lisicki E, Block R, Cara-Carmona J, Pack LK et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol. 2019;93(7):1817-33. [Crossref]  [PubMed]
  4. Magrì D, Sánchez-Moreno P, Caputo G, Gatto F, Veronesi M, Bardi G, et al. Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano. 2018;12(8):7690-700. [Crossref]  [PubMed]
  5. Thubagere A, Reinhard BM. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model. ACS Nano. 2010;4(7):3611-22. [Crossref]  [PubMed]
  6. Carr KE, Smyth SH, McCullough MT, Morris JF, Moyes SM. Morphological aspects of interactions between microparticles and mammalian cells: intestinal uptake and onward movement. Prog Histochem Cytochem. 2012;46(4):185-252. [Crossref]  [PubMed]
  7. Z Zhang Y, Wang S, Olga V, Xue Y, Lv S, Diao X et al. The potential effects of microplastic pollution on human digestive tract cells. Chemosphere. 2022;291(Pt 1):132714. [Crossref]  [PubMed]
  8. Forte M, Iachetta G, Tussellino M, Carotenuto R, Prisco M, De Falco M et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol In Vitro. 2016;31:126-36. [Crossref]  [PubMed]
  9. Herrala M, Huovinen M, Järvelä E, Hellman J, Tolonen P, Lahtela-Kakkonen M et al. Micro-sized polyethylene particles affect cell viability and oxidative stress responses in human colorectal adenocarcinoma Caco-2 and HT-29 cells. Sci Total Environ. 2023;867:161512. [Crossref]  [PubMed]
  10. Walczak AP, Kramer E, Hendriksen PJ, Tromp P, Helsper JP, van der Zande M et al. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Nanotoxicology. 2015;9(4):453-61. [Crossref]  [PubMed]
  11. Liu S, Wu X, Gu W, Yu J, Wu B. Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by in vitro Caco-2 models. Chemosphere. 2020;256:127204. [Crossref]  [PubMed]
  12. Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci Total Environ. 2022;831:154907. [Crossref]  [PubMed]
  13. Amato-Lourenço LF, Carvalho-Oliveira R, Júnior GR, Dos Santos Galvão L, Ando RA, Mauad T. Presence of airborne microplastics in human lung tissue. J Hazard Mater. 2021;416:126124. [Crossref]  [PubMed]
  14. Shi X, Wang X, Huang R, Tang C, Hu C, Ning P et al. Cytotoxicity and Genotoxicity of Polystyrene Micro- and Nanoplastics with Different Size and Surface Modification in A549 Cells. Int J Nanomedicine. 2022;17:4509-23. [Crossref]  [PubMed]  [PMC]
  15. Dong CD, Chen CW, Chen YC, Chen HH, Lee JS, Lin CH. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. J Hazard Mater. 2020;385:121575. [Crossref]  [PubMed]
  16. Schmidt A, Mühl M, Brito WADS, Singer D, Bekeschus S. Antioxidant Defense in Primary Murine Lung Cells following Short- and Long-Term Exposure to Plastic Particles. Antioxidants (Basel). 2023;12(2):227. [Crossref]  [PubMed]  [PMC]
  17. Rajendran D, Chandrasekaran N. Journey of micronanoplastics with blood components. RSC Adv. 2023;13(45):31435-59. [Crossref]  [PubMed]  [PMC]
  18. Salimi A, Alavehzadeh A, Ramezani M, Pourahmad J. Differences in sensitivity of human lymphocytes and fish lymphocytes to polyvinyl chloride microplastic toxicity. Toxicol Ind Health. 2022;38(2):100-11. [Crossref]  [PubMed]
  19. Hwang J, Choi D, Han S, Choi J, Hong J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci Total Environ. 2019;684:657-69. [Crossref]  [PubMed]
  20. Çobanoğlu H, Belivermiş M, Sıkdokur E, Kılıç Ö, Çayır A. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere. 2021;272:129805. [Crossref]  [PubMed]
  21. Deng J, Ibrahim MS, Tan LY, Yeo XY, Lee YA, Park SJ et al. Microplastics released from food containers can suppress lysosomal activity in mouse macrophages. J Hazard Mater. 2022;435:128980. [Crossref]  [PubMed]  [PMC]
  22. Bhattacharjee S, Ershov D, Islam MA, Kampfer AM., Maslowska KA, van der Gucht J, et al. Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Advances. 2014; 4(37), 19321-30. [Crossref]
  23. Wolff CM, Singer D, Schmidt A, Bekeschus S. Immune and inflammatory responses of human macrophages, dendritic cells, and T-cells in presence of micro- and nanoplastic of different types and sizes. J Hazard Mater. 2023;459:132194. [Crossref]  [PubMed]
  24. MohanKumar SM, Campbell A, Block M, Veronesi B. Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology. 2008;29(3):479-88. [Crossref]  [PubMed]
  25. Ranft U, Schikowski T, Sugiri D, Krutmann J, Krämer U. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res. 2009;109(8):1004-11. [Crossref]  [PubMed]
  26. Chen H, Kwong JC, Copes R, Tu K, Villeneuve PJ, van Donkelaar A, et al. Living near major roads and the incidence of dementia, Parkinson's disease, and multiple sclerosis: a population-based cohort study. Lancet. 2017;389(10070):718-26. [Crossref]  [PubMed]
  27. Liang B, Huang Y, Zhong Y, Li Z, Ye R, Wang B et al. Brain single-nucleus transcriptomics highlights that polystyrene nanoplastics potentially induce Parkinson's disease-like neurodegeneration by causing energy metabolism disorders in mice. J Hazard Mater. 2022;430:128459. [Crossref]  [PubMed]
  28. Liu Z, Sokratian A, Duda AM, Xu E, Stanhope C, Fu A, et al. Anionic nanoplastic contaminants promote Parkinson's disease-associated α-synuclein aggregation. Sci Adv. 2023;9(46):eadi8716. [Crossref]  [PubMed]  [PMC]
  29. Han SW, Choi J, Ryu KY. Recent progress and future directions of the research on nanoplastic-induced neurotoxicity. Neural Regen Res. 2024;19(2):331-5. [Crossref]  [PubMed]  [PMC]
  30. Tang Q, Li T, Chen K, Deng X, Zhang Q, Tang H, et al. PS-NPs Induced Neurotoxic Effects in SHSY-5Y Cells via Autophagy Activation and Mitochondrial Dysfunction. Brain Sci.2022;12(7):952. [Crossref]  [PubMed]  [PMC]
  31. Murali K, Kenesei K, Li Y, Demeter K, Környei Z, Madarász E. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells. Nanoscale. 2015;7(9):4199-210. [Crossref]  [PubMed]
  32. Wang F, Bexiga MG, Anguissola S, Boya P, Simpson JC, Salvati A et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale. 2013;5(22):10868-76. [Crossref]  [PubMed]
  33. Nemkov T, Reisz JA, Xia Y, Zimring JC, D'Alessandro A. Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport. Expert Rev Proteomics. 2018;15(11):855-64. [Crossref]  [PubMed]
  34. Bogdanova A, Kaestner L, Simionato G, Wickrema A, Makhro A. Heterogeneity of Red Blood Cells: Causes and Consequences. Front Physiol. 2020;11:392. [Crossref]  [PubMed]  [PMC]
  35. Arrigo F, Impellitteri F, Piccione G, Faggio C. Phthalates and their effects on human health: Focus on erythrocytes and the reproductive system. Comp Biochem Physiol C Toxicol Pharmacol. 2023;270:109645. [Crossref]  [PubMed]
  36. Sicińska P, Kik K, Bukowska B. Human Erythrocytes Exposed to Phthalates and Their Metabolites Alter Antioxidant Enzyme Activity and Hemoglobin Oxidation. Int J Mol Sci. 2020;21(12):4480. [Crossref]  [PubMed]  [PMC]
  37. Chambers E, Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp Biol Med (Maywood). 2007;232(7):958-66.
  38. Barbul A, Singh K, Horev-Azaria L, Dasgupta S, Auth T, Korenstein R, et al. Nanoparticle-Decorated Erythrocytes Reveal that Particle Size Controls theExtent of Adsorption, Cell Shape, and Cell Deformability. ACS Appl Nano Mater. 2018;1(8): 3785-99. [Crossref]
  39. Barshtein G, Livshits L, Shvartsman LD, Shlomai NO, Yedgar S, Arbell D. Polystyrene Nanoparticles Activate Erythrocyte Aggregation and Adhesion to Endothelial Cells. Cell Biochem Biophys. 2016;74:19-27. [Crossref]  [PubMed]
  40. Barshtein G, Arbell D, Yedgar S. Hemolytic effect of polymeric nanoparticles: role of albumin. IEEE Trans Nanobioscience. 2011;10(4):259-61. [Crossref]  [PubMed]
  41. Kim EH, Choi S, Kim D, Park HJ, Bian Y, Choi SH, et al. Amine-modified nanoplastics promote the procoagulant activation of isolated human red blood cells and thrombus formation in rats. Part Fibre Toxicol. 2022;19(1):60. [Crossref]  [PubMed]  [PMC]
  42. Holinstat M. Normal platelet function. Cancer Metastasis Rev. 2017;36(2):195-8. [Crossref]  [PubMed]  [PMC]
  43. Tran DQ, Stelflug N, Hall A, Nallan Chakravarthula T, Alves N. Microplastic Effects on Thrombin-Fibrinogen Clotting Dynamics Measured via Turbidity and Thromboelastography Biomolecules 2022;12(12):1864. [Crossref]  [PubMed]  [PMC]
  44. Wu D, Feng Y, Wang R, Jiang J, Guan Q, Yang X, et al. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence. J Adv Res. 2023;49:141-50. [Crossref]  [PubMed]  [PMC]
  45. Krüger-Genge A, Blocki A, Franke RP, Jung F. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci. 2019;20(18):4411. [Crossref]  [PubMed]  [PMC]
  46. Yan J, Pan Y, He J, Pang X, Shao W, Wang C, et al. Toxic vascular effects of polystyrene microplastic exposure. Sci Total Environ. 2023;905:167215. [Crossref]  [PubMed]
  47. Gopinath PM, Saranya V, Vijayakumar S, Mythili Meera M, Ruprekha S, Kunal R, et al. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci Rep. 2019;9(1):8860. [Crossref]  [PubMed]  [PMC]