The Effects of Microplastics on Human Health Systemically

periodontoloji-10-1-2024

Arda BÜYÜKSUNGURa , Nilsun BAĞIŞb
aAnkara University Faculty of Dentistry, Department of Basic Medical Sciences, Ankara, Türkiye
bAnkara University Faculty of Dentistry, Department of Periodontology, Ankara, Türkiye

Büyüksungur A, Bağış N. The effects of microplastics on human health systemically. In: Toygar H, Balcı N, eds. Exposure to Microplastics in Life and Dentistry. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.17-23.

ABSTRACT
The usage of plastic has dramatically increased in the last 50 years and the waste of plastics become a huge problem because of the single use of plastics. The accumulation of waste plastic materials in both landfill and the oceans lead to creation of the micro and nano-sized plastic particles with the help of physical, chemical, and biological effects. Many studies reported the effect of microplastics on the human body at molecular and cellular levels. This chapter aims to describe the routes, accumulation, distribution, and systemic effects of microplastics in the human body.

Keywords: Microplastics; systemic health; biological effect; plastics; relative biological effectiveness

Referanslar

  1. Da Costa, J.P. Micro- and Nanoplastics in the Environment: Research and Policymaking. Curr Opinion Environmental Sci Health. 2018;1(1):12-6. [Crossref]
  2. Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Roy PD. Microplastic diagnostics in humans: "The 3Ps" Progress, problems, and prospects. Sci Total Environ. 2023;856(Part 2):159164. [Crossref]  [PubMed]
  3. SAPEA, Science Advice for Policy by European Academies. A Scientific Perspective on Microplastics in Nature and Society. Berlin: SAPEA; 2019.
  4. Yee MS, Hii LW, Looi CK, Lim WM, Wong SF, Kok YY, et al. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials (Basel). 2021;11(2):496. [Crossref]  [PubMed]  [PMC]
  5. Mamun AA, Prasetya TAE, Dewi IR, Ahmad M. Microplastics in human food chains: Food becoming a threat to health safety. Sci Total Environ. 2023;858(Pt 1):159834. [Crossref]  [PubMed]
  6. Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull. 2011;62(12):2588-97. [Crossref]  [PubMed]
  7. Karbalaei S, Hanachi P, Walker TR, Cole M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ Sci Pollut Res Int. 2018;25(36):36046-63. [Crossref]  [PubMed]
  8. López de Las Hazas MC, Boughanem H, Dávalos A. Untoward Effects of Micro- and Nanoplastics: An Expert Review of Their Biological Impact and Epigenetic Effects. Adv Nutr. 2022;13(4):1310-23. [Crossref]  [PubMed]  [PMC]
  9. Yang Z, Wang M, Feng Z, Wang Z, Lv M, Chang J, et al. Human Microplastics Exposure and Potential Health Risks to Target Organs by Different Routes: A Review. Curr Pollution Reports. 2023;9(3):468-85. [Crossref]
  10. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ. 2020;702:134455. [Crossref]  [PubMed]
  11. Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol. 2009;1(4):197-206. [Crossref]  [PubMed]  [PMC]
  12. Mason SA, Welch VG, Neratko J. Synthetic Polymer Contamination in Bottled Water. Front Chem. 2018;6:407. [Crossref]  [PubMed]  [PMC]
  13. Ge H, Yan Y, Wu D, Huang Y, Tian F. Potential role of LINC00996 in colorectal cancer: a study based on data mining and bioinformatics. Onco Targets Ther. 2018;11:4845-55. [Crossref]  [PubMed]  [PMC]
  14. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Cell Junctions. In Molecular Biology of the Cell. 4th ed. New York, NY, USA: Garland Science; 2002.
  15. Bergmann M, Gutow L, Klages M. Marine Anthropogenic Litter. Cham, Switzerland: Springer; 2015. [Crossref]
  16. Vethaak AD, Leslie HA. Plastic Debris Is a Human Health Issue. Environ Sci Technol. 2016;50(13):6825-6. [Crossref]  [PubMed]
  17. Ohlwein S, Kappeler R, Kutlar Joss M, Künzli N, Hoffmann B. Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health. 2019;64(4):547-59. [Crossref]  [PubMed]
  18. Rist S, Carney Almroth B, Hartmann NB, Karlsson TM. A critical perspective on early communications concerning human health aspects of microplastics. Sci Total Environ. 2018;626:720-6. [Crossref]  [PubMed]
  19. Prata JC. Airborne microplastics: Consequences to human health? Environ Pollut. 2018;234:115-26. [Crossref]  [PubMed]
  20. Bouwstra J, Pilgram G, Gooris G, Koerten H, Ponec M. New aspects of the skin barrier organization. Skin Pharmacol Appl Skin Physiol. 2001;14 Suppl 1:52-62. [Crossref]  [PubMed]
  21. Rashed AH, Yesilay G, Hazeem L, Rashdan S, AlMealla R, Kilinc Z, et al. Micro-and Nano-Plastics Contaminants in the Environment: Sources, Fate, Toxicity, Detection, Remediation, and Sustainable Perspectives. 2023;15(20):3535. [Crossref]
  22. Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99(1):53-62. [Crossref]  [PubMed]
  23. Campbell CS, Contreras-Rojas LR, Delgado-Charro MB, Guy RH. Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. J Control Release. 2012;162(1):201-7. [Crossref]  [PubMed]
  24. Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, et al. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126(6):1316-22. [Crossref]  [PubMed]
  25. Qiao R, Sheng C, Lu Y, Zhang Y, Ren H, Lemos B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci Total Environ. 2019;662:246-53. [Crossref]  [PubMed]
  26. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 2001;175(3):191-9. [Crossref]  [PubMed]
  27. Forte M, Iachetta G, Tussellino M, Carotenuto R, Prisco M, De Falco M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol In Vitro. 2016;31:126-36. [Crossref]  [PubMed]
  28. Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, Fröhlich E. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol. 2014;30(1):1-16. [Crossref]  [PubMed]  [PMC]
  29. Fuchs AK, Syrovets T, Haas KA, Loos C, Musyanovych A, Mailänder V, et al. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials. 2016;85:78-87. [Crossref]  [PubMed]
  30. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Polyethylene particles of a 'critical size' are necessary for the induction of cytokines by macrophages in vitro. Biomaterials. 1998;19(24):2297-302. [Crossref]  [PubMed]
  31. Massin P, Achour S. Wear products of total hip arthroplasty: The case of polyethylene. Morphologie. 2017;101(332):1-8. [Crossref]  [PubMed]
  32. Nich C, Goodman SB. Role of macrophages in the biological reaction to wear debris from joint replacements. J Long Term Eff Med Implants. 2014;24(4):259-65. [Crossref]  [PubMed]  [PMC]
  33. Devane PA, Bourne RB, Rorabeck CH, Hardie RM, Horne JG. Measurement of polyethylene wear in metal-backed acetabular cups. I. Three-dimensional technique. Clin Orthop Relat Res. 1995;(319):303-16. [Crossref]
  34. Devane PA, Bourne RB, Rorabeck CH, MacDonald S, Robinson EJ. Measurement of polyethylene wear in metal-backed acetabular cups. II. Clinical application. Clin Orthop Relat Res. 1995;(319):317-26. [Crossref]
  35. Deng Y, Zhang Y, Lemos B, Ren H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep. 2017;7:46687. [Crossref]  [PubMed]  [PMC]
  36. Inkielewicz-Stepniak I, Tajber L, Behan G, Zhang H, Radomski MW, Medina C, et al. The Role of Mucin in the Toxicological Impact of Polystyrene Nanoparticles. Materials (Basel). 2018;11(5):724. [Crossref]  [PubMed]  [PMC]
  37. Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale. 2015;7(2):736-46. [Crossref]  [PubMed]
  38. Xia T, Kovochich M, Liong M, Zink JI, Nel AE. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano. 2008;2(1):85-96. [Crossref]  [PubMed]
  39. Liu X, Tian X, Xu X, Lu J. Design of a phosphinate-based bioluminescent probe for superoxide radical anion imaging in living cells. Luminescence. 2018;33(6):1101-6. [Crossref]  [PubMed]
  40. Paget V, Dekali S, Kortulewski T, Grall R, Gamez C, Blazy K, et al. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages. PLoS One. 2015;10(4):e0123297. [Crossref]  [PubMed]  [PMC]
  41. Ruenraroengsak P, Tetley TD. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells. Part Fibre Toxicol. 2015;12:19. [Crossref]  [PubMed]  [PMC]
  42. Thubagere A, Reinhard BM. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model. ACS Nano. 2010;4(7):3611-22. [Crossref]  [PubMed]
  43. Mahadevan G, Valiyaveettil S. Understanding the interactions of poly(methyl methacrylate) and poly(vinyl chloride) nanoparticles with BHK-21 cell line. Sci Rep. 2021;11(1):2089. [Crossref]  [PubMed]  [PMC]
  44. Xia L, Gu W, Zhang M, Chang YN, Chen K, Bai X, et al. Endocytosed nanoparticles hold endosomes and stimulate binucleated cells formation. Part Fibre Toxicol. 2016;13(1):63. [Crossref]  [PubMed]  [PMC]
  45. Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP, et al. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol. 2012;7(4):264-71. [Crossref]  [PubMed]
  46. Stock V, Böhmert L, Lisicki E, Block R, Cara-Carmona J, Pack LK, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol. 2019;93(7):1817-33. [Crossref]  [PubMed]
  47. Lu L, Wan Z, Luo T, Fu Z, Jin Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ. 2018;631-632:449-58. [Crossref]  [PubMed]
  48. Luo T, Zhang Y, Wang C, Wang X, Zhou J, Shen M, et al. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environ Pollut. 2019;255(Pt 1):113122. [Crossref]  [PubMed]
  49. Luo T, Wang C, Pan Z, Jin C, Fu Z, Jin Y. Maternal Polystyrene Microplastic Exposure during Gestation and Lactation Altered Metabolic Homeostasis in the Dams and Their F1 and F2 Offspring. Environ Sci Technol. 2019;53(18):10978-92. [Crossref]  [PubMed]
  50. Lu K, Lai KP, Stoeger T, Ji S, Lin Z, Lin X, et al. Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology. J Hazard Mater. 2021;416:126069. [Crossref]  [PubMed]
  51. Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ. 2019;694:133794. [Crossref]  [PubMed]
  52. Wang S, Han Q, Wei Z, Wang Y, Xie J, Chen M. Polystyrene microplastics affect learning and memory in mice by inducing oxidative stress and decreasing the level of acetylcholine. Food Chem Toxicol. 2022;162:112904. [Crossref]  [PubMed]
  53. Yin K, Wang D, Zhao H, Wang Y, Zhang Y, Liu Y, et al. Polystyrene microplastics up-regulates liver glutamine and glutamate synthesis and promotes autophagy-dependent ferroptosis and apoptosis in the cerebellum through the liver-brain axis. Environ Pollut. 2022;307:119449. [Crossref]  [PubMed]
  54. McCarthy J, Gong X, Nahirney D, Duszyk M, Radomski M. Polystyrene nanoparticles activate ion transport in human airway epithelial cells. Int J Nanomedicine. 2011;6:1343-56. [Crossref]  [PubMed]  [PMC]
  55. Wright SL, Kelly FJ. Plastic and Human Health: A Micro Issue? Environ Sci Technol. 2017;51(12):6634-47. [Crossref]  [PubMed]
  56. Yong CQY, Valiyaveettil S, Tang BL. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int J Environ Res Public Health. 2020;17(5):1509. [Crossref]  [PubMed]  [PMC]
  57. Dong CD, Chen CW, Chen YC, Chen HH, Lee JS, Lin CH. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. J Hazard Mater. 2020;385:121575. [Crossref]  [PubMed]