THE GLYMPHATIC SYSTEM IN NEURODEGENERATION: ALZHEIMER’S DISEASE

Fadime Çadırcı Tungaç

İstanbul Medipol University, Vocational School, Program of Electroneurophysiology, İstanbul, Türkiye

Çadırcı Tungaç F. The Glymphatic System In Neurodegeneration: Alzheimer’s Disease. In: Hanoğlu L, editor. From Neuroscience Laboratory to Neurology Clinic. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.4148.

ABSTRACT

The accumulation of amyloid plaques and neurofibrillary tangles in the brain parenchyma is one of the factors that disrupt the functioning of cognitive processes. Astrocytes play a significant role in eliminating this accumulation and assisting in the proper collection of waste thus, are highly significant for longevity and the maintenance of cognitive capacities. Prominent research indicates that the glymphatic system eliminates over half of the plaque deposition and plays a major role in maintaining the functionality of the central nervous system (CNS). Studies of the underlying mechanisms in neurodegenerative diseases like Alzheimer’s disease (AD) are yet unknown. However, glymphatic clearance as a means of addressing AD and other novel approaches in this field offer an original point of view that clarifies this process. Novel studies employing various methodologies and demonstrating increased glymphatic system activity during sleep, particularly during sleepwake cycles, holds significant value in comprehending the fundamental mechanisms of neurodegenerative diseases and acquiring novel scientific understanding in which are critical for newer therapeutic interventions.

Keywords: Alzheimer’s disease; Astrocyte; Glymphatic system; Neurodegenerative diseases; Sleepwake

Referanslar

  1. Verkhratsky A, Butt AM. Chapter 11 Neurodegenerative diseases. Verkhratsky A, Butt AM, eds. Neuroglia: Academic Press; 2023. p.56398. [Crossref]
  2. Agrawal M. Chapter 26 Molecular basis of chronic neurodegeneration. Kumar D, ed. Clinical Molecular Medicine: Academic Press; 2020. p.44760. [Crossref]
  3. Calderaro A, Patanè GT, Tellone E, et al. The Neuroprotective Potentiality of Flavonoids on Alzheimer's Disease. Int J Mol Sci. 2022;23(23):14835. Published 2022 Nov 27. [Crossref]  [PubMed]  [PMC]
  4. Peet BT, Spina S, Mundada N, La Joie R. Neuroimaging in Frontotemporal Dementia: Heterogeneity and Relationships with Underlying Neuropathology. Neurotherapeutics. 2021;18(2):728752. [Crossref]  [PubMed]  [PMC]
  5. Gil JM, Rego AC. Mechanisms of neurodegeneration in Huntington's disease. The European journal of neuroscience. 2008;27(11):280320. Epub 2008/07/01. [Crossref]  [PubMed]
  6. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):101624. Epub 2018/10/26. [Crossref]  [PubMed]
  7. Peng S, Liu J, Liang C, Yang L, Wang G. Aquaporin4 in glym phatic system, and its implication for central nervous system disorders. Neurobiology of Disease. 2023;179:106035. [Crossref]  [PubMed]
  8. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. 2012;4(147):147ra11ra11. [Crossref]  [PubMed]  [PMC]
  9. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta neuropathologica. 2010;119(1):735. Epub 2009/12/17. [Crossref]  [PubMed]  [PMC]
  10. Nakada T. VirchowRobin space and aquaporin4: new insights on an old friend. Croat Med J. 2014;55(4):32836. Epub 2014/08/29. [Crossref]  [PubMed]  [PMC]
  11. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner's Guide. Neurochem Res. 2015;40(12):258399. Epub 2015/05/08. [Crossref]  [PubMed]  [PMC]
  12. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. 2014;76(6):84561. [Crossref]  [PubMed]  [PMC]
  13. Lu DC, Zhang H, Zador Z, Verkman AS. Impaired olfaction in mice lacking aquaporin4 water channels. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2008;22(9):321623. Epub 2008/05/31. [Crossref]  [PubMed]  [PMC]
  14. Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloidβ peptide catabolism. Journal of Neuroscience. 2006;26(43):1093948. [Crossref]  [PubMed]  [PMC]
  15. Gilman S. Alzheimer's disease. Perspect Biol Med. 1997;40(2):23045. Epub 1997/01/01. [Crossref]  [PubMed]
  16. Niikura T, Tajima H, Kita Y. Neuronal cell death in Alzheimer's disease and a neuroprotective factor, humanin. Curr Neuropharmacol. 2006;4(2):13947. Epub 2008/07/11. [Crossref]  [PubMed]  [PMC]
  17. Szarka A. [The Role of BetaAmyloid and Mitochondrial Dysfunction in the Pathogenesis of Alzheimer's Disease]. Ideggyogy Sz. 2015;68(78):2228. Epub 2015/09/19.
  18. Eratne D, Loi SM, Farrand S, Kelso W, Velakoulis D, Looi JC. Alzheimer's disease: clinical update on epidemiology, pathophysiology and diagnosis. Australas Psychiatry. 2018;26(4):34757. Epub 2018/04/05. [Crossref]  [PubMed]
  19. van Duijn CM, Tanja TA, Haaxma R, Schulte W, Saan RJ, Lameris AJ, et al. Head trauma and the risk of Alzheimer's disease. American journal of epidemiology. 1992;135(7):77582. Epub 1992/04/01. [Crossref]  [PubMed]
  20. Vogt BA, Vogt LJ, Hof PR. 10 Patterns of Cortical Neurodegeneration in Alzheimer's Disease: Subgroups, Subtypes, and Implications for Staging Strategies. In: Hof PR, Mobbs CV, editors. Functional Neurobiology of Aging. San Diego: Academic Press; 2001. p. 11129. [Crossref]
  21. Sheppard O CM. Alzheimer's Disease: Etiology, Neuropathology and Pathogenesis. Sheppard O, Coleman M Alzheimer's Disease: Etiology, Neuropathology and Pathogenesis In: Huang X, editor Alzheimer's Disease: Drug Discovery [Internet] Brisbane (AU): Exon Publications; 2020 Dec 18 Chapter 1. 2020. [Crossref]  [PMC]
  22. Counil H, Krantic S. Synaptic Activity and (Neuro)Inflammation in Alzheimer's Disease: Could Exosomes be an Additional Link? Journal of Alzheimer's Disease. 2020;74:102943. [Crossref]  [PubMed]
  23. Buchanan H, Mackay M, Palmer K, Tothová K, Katsur M, Platt B, et al. Synaptic Loss, ER Stress and NeuroInflammation Emerge Late in the Lateral Temporal Cortex and Associate with Progressive Tau Pathology in Alzheimer's Disease. Molecular Neurobiology. 2020;57(8):325872. [Crossref]  [PubMed]  [PMC]
  24. Kametani F, Hasegawa M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's Disease. Frontiers in neuroscience. 2018;12:25. Epub 2018/02/15. [Crossref]  [PubMed]  [PMC]
  25. Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. 1984. Biochem Biophys Res Commun. 2012;425(3):5349. Epub 2012/08/29.
  26. Asai H, Ohkawa N, Saitoh Y, Ghandour K, Murayama E, Nishizono H, et al. Pcdhβ deficiency affects hippocampal CA1 ensemble activity and contextual fear discrimination. 2020;13(1):110. [Crossref]  [PubMed]  [PMC]
  27. Braak H, Braak E. Neuropathological stageing of Alzheimerrelated changes. Acta neuropathologica. 1991;82(4):23959. Epub 1991/01/01. [Crossref]  [PubMed]
  28. Hong S, BejaGlasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):7126. [Crossref]  [PubMed]  [PMC]
  29. Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):506. Epub 2020/10/03. [Crossref]  [PubMed]  [PMC]
  30. Terada T, Yokokura M, Obi T, Bunai T, Yoshikawa E, Ando I, et al. In vivo direct relation of tau pathology with neuroinflammation in early Alzheimer's disease. Journal of neurology. 2019;266:218696. [Crossref]  [PubMed]
  31. Suzuki Y, Nakamura Y, Yamada K, Igarashi H, Kasuga K, Yokoyama Y, et al. Reduced CSF Water Influx in Alzheimer's Disease Supporting the βAmyloid Clearance Hypothesis. PloS one. 2015;10(5):e0123708. Epub 2015/05/07. [Crossref]  [PubMed]  [PMC]
  32. Hsu JL, Wei YC, Toh CH, Hsiao IT, Lin KJ, Yen TC, et al. Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease. Annals of neurology. 2023;93(1):16474. Epub 2022/10/11. [Crossref]  [PubMed]  [PMC]
  33. Ruan X, Huang X, Li Y, Li E, Li M, Wei X. Diffusion Tensor Imaging Analysis Along the Perivascular Space Index in Primary Parkinson's Disease Patients With and Without Freezing of Gait. Neuroscience. 2022;506:517. [Crossref]  [PubMed]
  34. Zeppenfeld DM, Simon M, Haswell JD, D'Abreo D, Murchison C, Quinn JF, et al. Association of Perivascular Localization of Aquaporin4 With Cognition and Alzheimer Disease in Aging Brains. JAMA Neurology. 2017;74(1):919. [Crossref]  [PubMed]
  35. Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature communications. 2018;9(1):4878. Epub 2018/11/20.018073183. [Crossref]  [PubMed]  [PMC]
  36. Louveau A, Da Mesquita S, Kipnis J. Lymphatics in Neu rological Disorders: A NeuroLymphoVascular Component of Multiple Sclerosis and Alzheimer's Disease? Neuron. 2016;91(5):95773. Epub 2016/09/10. [Crossref]  [PubMed]  [PMC]
  37. Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, et al. Glymphatic System Impairment in Alzheimer's Disease and Idiopathic Normal Pressure Hydrocephalus. Trends in molecular medicine. 2020;26(3):28595. Epub 2020/01/22. [Crossref]  [PubMed]  [PMC]
  38. Huang SY, Zhang YR, Guo Y, Du J, Ren P, Wu BS, Feng JF; Alzheimer's Disease Neuroimaging Initiative; Cheng W, Yu JT. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer's disease. Alzheimers Dement. 2024 May;20(5):32513269. [Crossref]  [PubMed]  [PMC]
  39. Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, et al. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol. 2018;163164:11843. Epub 2017/09/14.
  40. BuzsÁk GJJosr. Memory consolidation during sleep: a neurophysiological perspective. 1998;7(S1):1723. [Crossref]  [PubMed]
  41. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. 2013;342(6156):3737. [Crossref]  [PubMed]  [PMC]
  42. Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140(10):2691705. Epub 2017/10/04. [Crossref]  [PubMed]  [PMC]
  43. Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep. 2018;8(1):7194. Epub 2018/05/10.018256664. [Crossref]  [PubMed]  [PMC]