The History of Graphene
Ekin YAYa , Melis YILMAZb
aPrivate Dentist, İstanbul, Türkiye
bİstanbul Medipol University Faculty of Dentistry, Department of Periodontology, İstanbul, Türkiye
Yay E, Yılmaz M. The history of graphene. Özcan M, Toygar H, eds. Graphene in Dentistry. 1st ed. Ankara: Türkiye Klinikleri; 2023. p.1-6.
ABSTRACT
Graphene, composed of carbon atoms organized in a two-dimensional hexagonal mesh, has emerged as a remarkable material with extraordinary electronic, mechanical, and thermal properties. With its remarkable qualities, graphene has been developed and used in a variety of industries such as, energy, environmental, sensors, bio-sensors and biomedical fields. Starting from a theoretical basis, graphene has become a rising star since the researches have been focusing on developing new methods of graphene synthesis. This article provides a concise historical overview of graphene, from its recent discovery to various ways it can be synthesized.
Keywords: Grapheme; history; chemistry techniques
Kaynak Göster
Referanslar
- Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183-91. [Crossref] [PubMed]
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-9. [Crossref] [PubMed]
- Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A. 2005;102(30):10451-3. [Crossref] [PubMed] [PMC]
- Dreyer DR, Ruoff RS, Bielawski CW. From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed Engl. 2010;49(49):9336-44. [Crossref] [PubMed]
- Arshad A, Jabbal M, Yan Y, Reay D. A review on graphene based nanofluids: preparation, characterization and applications. Journal of Molecular Liquids. J Mol Liq. 2019;279:444-8. [Crossref]
- Madurani AK, Suprapto S, Machrita NU, Bahar SL, Illiya W, Kurniawan F. Progress in Graphene Synthesis and its Application: History, Challenge and the Future Outlook for Research and Industry. J Solid State Sci Technol. 2020;9(9). [Crossref]
- Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene. Chem Rev. 2010;110(1):132-45. [Crossref] [PubMed]
- Tiwari S, Sahoo S, Wang N, Huczko A. Graphene research and their outputs: Status and prospect. J Sci Adv Mater. Dev. 2020;5(1):10-29. [Crossref]
- Bahadır EB, Sezgintürk MK. Applications of graphene in electrochemical sensing and biosensing. Trends Anal Chem. 2016;76:1-14. [Crossref]
- Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 2017;90:75-127. [Crossref]
- Tahriri M, Del Monico M, Moghanian A, Tavakkoli Yaraki M, Torres R, Yadegari A, et al. Graphene and its derivatives: Opportunities and challenges in dentistry. Mater Sci Eng C Mater Biol Appl. 2019;102:171-85. [Crossref] [PubMed]
- Peierls R. Quelques propriétés typiques des corps solides. Annales de l'I. H. P. 1935;5 (3):177-222.
- Landau LD. On the theory of phase transitions. II. Phys Z Sowjet. 1937;11.
- Mermin ND. Crystalline order in two dimensions. Phys Rev. 1968;176:250-4. [Crossref]
- Wallace PR. The Band Theory of Graphite. Phys Rev. 1947;71(9):622-34. [Crossref]
- Venables JA, Spiller GDT, Hanbucken M. Nucleation and growth of thin films. Rep Prog Phys. 1984;47:399-459. [Crossref]
- Evans JW, Thiel PA, Bartelt MC. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Sur Sci Rep. 2006;61: 1-128. [Crossref]
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197-200. [Crossref] [PubMed]
- Landau LD, Lifshitz EM. Statistical Physics. In Statistical Physics. Part I. 3rd ed. Pergamon Press; 1980. p.171-4.
- Meyer J, Geim A, Katsnelson M, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene sheets. 2007;446:60-3. [Crossref] [PubMed]
- Rafiee R, Eskandariyun A. Comparative study on predicting Young's modulus of graphene sheets using nano-scale continuum mechanics approach. Phys E: Low-Dimens. 2017;90:42-8. [Crossref]
- Jarosz A, Skoda M, Dudek I, Szukiewicz D. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells. Oxid Med Cell Longev. 2016;2016:5851035. [Crossref] [PubMed] [PMC]
- Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112(11):6156-214. [Crossref] [PubMed] [PMC]
- Yu W, Sisi L, Haiyan Y, Jie L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances. 2020;10(26):15328-45. [Crossref] [PubMed] [PMC]
- Pletikosić I, Kralj M, Pervan P, Brako R, Coraux J, N'diaye AT, et al. Dirac cones and minigaps for graphene on Ir(111). Phys Rev Lett. 2009;102(5):056808. [Crossref] [PubMed]
- Charlier J, Eklund PC, Zhu J, Ferrari AC. Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. Top Appl Phys. 2008;111:673-709. [Crossref]
- Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH. Applications of Graphene. In Graphene Fundamentals and emergent applications. Elsevier; 2013. p. 333-437. [Crossref]
- Jiang Z, Zhang Y, Tan YW, Stormer HL, Kim P. Quantum Hall effect in graphene. Solid State Commun. 2007;143(1-2). [Crossref]
- Muruganathan M, Sun J, Imamura T, Mizuta H. Electrically Tunable van der Waals Interaction in Graphene-Molecule Complex. Nano Lett. 2015;15(12):8176-80. [Crossref] [PubMed]
- Khan Y, Obaidulla SM, Habib MR, Gayen A, Liang T, Wang X, et al. Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today. 2020;34:100902. [Crossref]
- Abbas Q, Shinde PA, Abdelkareem MA, Alami AH, Mirzaeian M, Yadav A, et al. Graphene Synthesis Techniques and Environmental Applications. Materials (Basel). 2022;15(21):7804. [Crossref] [PubMed] [PMC]
- Phaedon A, Christos D. Graphene: Synthesis and Applications. Mater Today. 2012;15(3):86-97. [Crossref]
- Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 2008;3(9):563-8. [Crossref] [PubMed]
- Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc. 2009;131(10):3611-20. [Crossref] [PubMed]
- Green AA, Hersam MC. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 2009;9(12):4031-6. [Crossref] [PubMed]
- Sahu TK, Ranjan P, Kumar P. Chemical exfoliation synthesis of boron nitride and molybdenum disulfide 2D sheets via modified Hummers' method. Emergent Mater. 2021;4(3):645-54. [Crossref]
- Bhuyan MSA, Uddin N, Islam MM, Bipasha FA, Hossain SS. Synthesis of graphene. Int Nano Lett. 2016;6:65-83. [Crossref]
- Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312-4. [Crossref] [PubMed]
- Liu W, Li H, Xu C, Khatami Y, Banerjee K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon. 2011;49(13):4122-30. [Crossref]
- Norimatsu W, Kusunoki M. Epitaxial graphene on SiC{0001}: advances and perspectives. Phys Chem Chem Phys. 2014;16(8):3501-11. [Crossref] [PubMed]
- Yazdi GR, Iakimov T, Yakimova R. Epitaxial Graphene on SiC: A Review of Growth and Characterization. 2016;6(5):53. [Crossref]
- Jiříčková A, Jankovský O, Sofer Z, Sedmidubský D. Synthesis and Applications of Graphene Oxide. Materials (Basel). 2022;15(3):920. [Crossref] [PubMed] [PMC]
- Brodie BC. On the Atomic Weight of Graphite. Philos Trans R Soc London. 1859;149:249-59. [Crossref]
- Staudenmaier L. Verfahrenzurdarstellung der graphits äure. Ber Dtsch Chem Ges. 1898;31:1481-7. [Crossref]
- Hummers WSi, Offeman RE. Preparation of graphitic oxide. J Am Chem. 1958;80:1339. [Crossref]
- Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806-14. [Crossref] [PubMed]
- Raslan A, Saenz Del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm. 2020;580:119226. [Crossref] [PubMed]
- Mombeshora ET, Muchuweni E. Dynamics of reduced graphene oxide: synthesis and structural models. RSC Adv. 2023;13(26):17633-55. [Crossref] [PubMed] [PMC]
- Li Z, Yao Y, Lin Z, Moon KS, Lin W, Wong C. Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem. 2010;20:4781-3. [Crossref]
- Lazauskas A, Marcinauskas L, Andrulevicius M. Photothermal Reduction of Thick Graphene Oxide Multilayer Films via Direct Laser Writing: Morphology, Structural and Chemical Properties. Superlattices and Microstructures. 2018;122:36-45. [Crossref]