The History of Graphene

periodontoloji-9-3-2023

Ekin YAYa , Melis YILMAZb

aPrivate Dentist, İstanbul, Türkiye
bİstanbul Medipol University Faculty of Dentistry, Department of Periodontology, İstanbul, Türkiye

ABSTRACT
Graphene, composed of carbon atoms organized in a two-dimensional hexagonal mesh, has emerged as a remarkable material with extraordinary electronic, mechanical, and thermal properties. With its remarkable qualities, graphene has been developed and used in a variety of industries such as, energy, environmental, sensors, bio-sensors and biomedical fields. Starting from a theoretical basis, graphene has become a rising star since the researches have been focusing on developing new methods of graphene synthesis. This article provides a concise historical overview of graphene, from its recent discovery to various ways it can be synthesized.
Keywords: Grapheme; history; chemistry techniques

Referanslar

  1. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183-91. [Crossref]  [PubMed]
  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-9. [Crossref]  [PubMed]
  3. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A. 2005;102(30):10451-3. [Crossref]  [PubMed]  [PMC]
  4. Dreyer DR, Ruoff RS, Bielawski CW. From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed Engl. 2010;49(49):9336-44. [Crossref]  [PubMed]
  5. Arshad A, Jabbal M, Yan Y, Reay D. A review on graphene based nanofluids: preparation, characterization and applications. Journal of Molecular Liquids. J Mol Liq. 2019;279:444-8. [Crossref]
  6. Madurani AK, Suprapto S, Machrita NU, Bahar SL, Illiya W, Kurniawan F. Progress in Graphene Synthesis and its Application: History, Challenge and the Future Outlook for Research and Industry. J Solid State Sci Technol. 2020;9(9). [Crossref]
  7. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene. Chem Rev. 2010;110(1):132-45. [Crossref]  [PubMed]
  8. Tiwari S, Sahoo S, Wang N, Huczko A. Graphene research and their outputs: Status and prospect. J Sci Adv Mater. Dev. 2020;5(1):10-29. [Crossref]
  9. Bahadır EB, Sezgintürk MK. Applications of graphene in electrochemical sensing and biosensing. Trends Anal Chem. 2016;76:1-14. [Crossref]
  10. Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 2017;90:75-127. [Crossref]
  11. Tahriri M, Del Monico M, Moghanian A, Tavakkoli Yaraki M, Torres R, Yadegari A, et al. Graphene and its derivatives: Opportunities and challenges in dentistry. Mater Sci Eng C Mater Biol Appl. 2019;102:171-85. [Crossref]  [PubMed]
  12. Peierls R. Quelques propriétés typiques des corps solides. Annales de l'I. H. P. 1935;5 (3):177-222.
  13. Landau LD. On the theory of phase transitions. II. Phys Z Sowjet. 1937;11.
  14. Mermin ND. Crystalline order in two dimensions. Phys Rev. 1968;176:250-4. [Crossref]
  15. Wallace PR. The Band Theory of Graphite. Phys Rev. 1947;71(9):622-34. [Crossref]
  16. Venables JA, Spiller GDT, Hanbucken M. Nucleation and growth of thin films. Rep Prog Phys. 1984;47:399-459. [Crossref]
  17. Evans JW, Thiel PA, Bartelt MC. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Sur Sci Rep. 2006;61: 1-128. [Crossref]
  18. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197-200. [Crossref]  [PubMed]
  19. Landau LD, Lifshitz EM. Statistical Physics. In Statistical Physics. Part I. 3rd ed. Pergamon Press; 1980. p.171-4.
  20. Meyer J, Geim A, Katsnelson M, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene sheets. 2007;446:60-3. [Crossref]  [PubMed]
  21. Rafiee R, Eskandariyun A. Comparative study on predicting Young's modulus of graphene sheets using nano-scale continuum mechanics approach. Phys E: Low-Dimens. 2017;90:42-8. [Crossref]
  22. Jarosz A, Skoda M, Dudek I, Szukiewicz D. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells. Oxid Med Cell Longev. 2016;2016:5851035. [Crossref]  [PubMed]  [PMC]
  23. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112(11):6156-214. [Crossref]  [PubMed]  [PMC]
  24. Yu W, Sisi L, Haiyan Y, Jie L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances. 2020;10(26):15328-45. [Crossref]  [PubMed]  [PMC]
  25. Pletikosić I, Kralj M, Pervan P, Brako R, Coraux J, N'diaye AT, et al. Dirac cones and minigaps for graphene on Ir(111). Phys Rev Lett. 2009;102(5):056808. [Crossref]  [PubMed]
  26. Charlier J, Eklund PC, Zhu J, Ferrari AC. Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. Top Appl Phys. 2008;111:673-709. [Crossref]
  27. Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH. Applications of Graphene. In Graphene Fundamentals and emergent applications. Elsevier; 2013. p. 333-437. [Crossref]
  28. Jiang Z, Zhang Y, Tan YW, Stormer HL, Kim P. Quantum Hall effect in graphene. Solid State Commun. 2007;143(1-2). [Crossref]
  29. Muruganathan M, Sun J, Imamura T, Mizuta H. Electrically Tunable van der Waals Interaction in Graphene-Molecule Complex. Nano Lett. 2015;15(12):8176-80. [Crossref]  [PubMed]
  30. Khan Y, Obaidulla SM, Habib MR, Gayen A, Liang T, Wang X, et al. Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today. 2020;34:100902. [Crossref]
  31. Abbas Q, Shinde PA, Abdelkareem MA, Alami AH, Mirzaeian M, Yadav A, et al. Graphene Synthesis Techniques and Environmental Applications. Materials (Basel). 2022;15(21):7804. [Crossref]  [PubMed]  [PMC]
  32. Phaedon A, Christos D. Graphene: Synthesis and Applications. Mater Today. 2012;15(3):86-97. [Crossref]
  33. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 2008;3(9):563-8. [Crossref]  [PubMed]
  34. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc. 2009;131(10):3611-20. [Crossref]  [PubMed]
  35. Green AA, Hersam MC. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 2009;9(12):4031-6. [Crossref]  [PubMed]
  36. Sahu TK, Ranjan P, Kumar P. Chemical exfoliation synthesis of boron nitride and molybdenum disulfide 2D sheets via modified Hummers' method. Emergent Mater. 2021;4(3):645-54. [Crossref]
  37. Bhuyan MSA, Uddin N, Islam MM, Bipasha FA, Hossain SS. Synthesis of graphene. Int Nano Lett. 2016;6:65-83. [Crossref]
  38. Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312-4. [Crossref]  [PubMed]
  39. Liu W, Li H, Xu C, Khatami Y, Banerjee K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon. 2011;49(13):4122-30. [Crossref]
  40. Norimatsu W, Kusunoki M. Epitaxial graphene on SiC{0001}: advances and perspectives. Phys Chem Chem Phys. 2014;16(8):3501-11. [Crossref]  [PubMed]
  41. Yazdi GR, Iakimov T, Yakimova R. Epitaxial Graphene on SiC: A Review of Growth and Characterization. 2016;6(5):53. [Crossref]
  42. Jiříčková A, Jankovský O, Sofer Z, Sedmidubský D. Synthesis and Applications of Graphene Oxide. Materials (Basel). 2022;15(3):920. [Crossref]  [PubMed]  [PMC]
  43. Brodie BC. On the Atomic Weight of Graphite. Philos Trans R Soc London. 1859;149:249-59. [Crossref]
  44. Staudenmaier L. Verfahrenzurdarstellung der graphits äure. Ber Dtsch Chem Ges. 1898;31:1481-7. [Crossref]
  45. Hummers WSi, Offeman RE. Preparation of graphitic oxide. J Am Chem. 1958;80:1339. [Crossref]
  46. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806-14. [Crossref]  [PubMed]
  47. Raslan A, Saenz Del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm. 2020;580:119226. [Crossref]  [PubMed]
  48. Mombeshora ET, Muchuweni E. Dynamics of reduced graphene oxide: synthesis and structural models. RSC Adv. 2023;13(26):17633-55. [Crossref]  [PubMed]  [PMC]
  49. Li Z, Yao Y, Lin Z, Moon KS, Lin W, Wong C. Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem. 2010;20:4781-3. [Crossref]
  50. Lazauskas A, Marcinauskas L, Andrulevicius M. Photothermal Reduction of Thick Graphene Oxide Multilayer Films via Direct Laser Writing: Morphology, Structural and Chemical Properties. Superlattices and Microstructures. 2018;122:36-45. [Crossref]