The Impact of the Vagus Nerve on Neurodegenerative and Neuropsychiatric Conditions in Connection with the Oral and Intestinal Microbiome

geleneksel tip-5-2-wos-kapak

Gözde İNa , Beste TACAL ASLANb , Tanju KADİRb

aMarmara University Institute of Health Sciences, Department of Basic Medical Sciences, İstanbul, Türkiye
bMarmara University Faculty of Dentistry, Department of Basic Medical Sciences, İstanbul, Türkiye

ABSTRACT
The vagus nerve (VN) is a major component of the parasympathetic nervous system, which oversees a wide range of important bodily functions, including mood control, immune response, digestion, and heart rate. It extends from its origin in the truncus cerebri to the neck and rib cage, and from there to the abdomen. It is also called the ”wandering nerve” because of its long path in the human body. The microbiome is an area of research that has received a lot of attention in recent years. Initial studies focused more on the intestinal microbiome and emphasized its effectiveness in preserving homeostasis as well as VN. Recent studies on neuropsychiatric diseases (NPD) have shown that the gut microbiome can correspond with the brain via the Gut-Brain Axis (GBA) and take part in diseases by affecting the brain. However, parallel studies examining the association between the oral microbiome and the brain also suggest oral bacteria may also influence NPD outcomes. However, the practices and pathways explaining how the oral flora and brain communicate in NPD remain largely unknown. This review will try to explain the activities of the vagus nerve and microbiome for neurodegenerative and neuropsychiatric diseases.
Keywords: Vagus nerve; gut microbiome-brain axis; oral microbiome; neurodegenerative disease; neuropsychiatric disease

Referanslar

  1. Fülling C, Dinan TG, Cryan JF. Gut Microbe to Brain Signaling: What Happens in Vagus…. Neuron. 2019;101(6):998-1002. [Crossref]  [PubMed]
  2. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203-9.
  3. Arneth BM. Gut-brain axis biochemical signalling from the gastrointestinal tract to the central nervous system: gut dysbiosis and altered brain function. Postgrad Med J. 2018;94(1114):446-52. [Crossref]  [PubMed]
  4. Liang S, Wu X, Jin F. Gut-Brain Psychology: Rethinking Psychology From the Microbiota-Gut-Brain Axis. Front Integr Neurosci. 2018;12:33. [Crossref]  [PubMed]  [PMC]
  5. Neuman H, Debelius JW, Knight R, Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev. 2015;39(4):509-21. [Crossref]  [PubMed]
  6. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet. 2004;20(7):292-9. Erratum in: Trends Genet. 2005;21(1):36. [Crossref]  [PubMed]
  7. Baker JL, Bor B, Agnello M, Shi W, He X. Ecology of the Oral Microbiome: Beyond Bacteria. Trends Microbiol. 2017;25(5):362-74. [Crossref]  [PubMed]  [PMC]
  8. Knight R, Callewaert C, Marotz C, Hyde ER, Debelius JW, McDonald D, et al. The Microbiome and Human Biology. Annu Rev Genomics Hum Genet. 2017;18:65-86. [Crossref]  [PubMed]
  9. Xue L, Zou X, Yang XQ, Peng F, Yu DK, Du JR. Chronic periodontitis induces microbiota-gut-brain axis disorders and cognitive impairment in mice. Exp Neurol. 2020;326:113176. [Crossref]  [PubMed]
  10. Yang I, Arthur RA, Zhao L, Clark J, Hu Y, Corwin EJ, et al. The oral microbiome and inflammation in mild cognitive impairment. Exp Gerontol. 2021;147:111273. [Crossref]  [PubMed]
  11. Altschuler SM, Escardo J, Lynn RB, Miselis RR. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology. 1993;104(2):502-9. [Crossref]  [PubMed]
  12. Bonaz B, Sinniger V, Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front Immunol. 2017;8:1452. [Crossref]  [PubMed]  [PMC]
  13. Powley TL, Jaffey DM, McAdams J, Baronowsky EA, Black D, Chesney L, et al. Vagal innervation of the stomach reassessed: brain-gut connectome uses smart terminals. Ann N Y Acad Sci. 2019;1454(1):14-30. [Crossref]  [PubMed]  [PMC]
  14. Phillips RJ, Powley TL. Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Brain Res Rev. 2000;34(1-2):1-26. [Crossref]  [PubMed]
  15. Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361(6408):eaat5236. [Crossref]  [PubMed]  [PMC]
  16. Schwartz GJ. Roles for gut vagal sensory signals in determining energy availability and energy expenditure. Brain Res. 2018;1693(Pt B):151-3. [Crossref]  [PubMed]  [PMC]
  17. Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci. 2021;15:650971. [Crossref]  [PubMed]  [PMC]
  18. Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39-71. [Crossref]  [PubMed]
  19. Cruz MT, Dezfuli G, Murphy EC, Vicini S, Sahibzada N, Gillis RA. GABAB Receptor Signaling in the Dorsal Motor Nucleus of the Vagus Stimulates Gastric Motility via a Cholinergic Pathway. Front Neurosci. 2019;13:967. [Crossref]  [PubMed]  [PMC]
  20. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry. 2018;9:44. [Crossref]  [PubMed]  [PMC]
  21. Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594(20):5781-90. [Crossref]  [PubMed]  [PMC]
  22. Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, et al. A Neural Circuit for Gut-Induced Reward. Cell. 2018;175(3):665-78.e23. Erratum in: Cell. 2018;175(3):887-8. [Crossref]  [PubMed]  [PMC]
  23. Contaldo M, Itro A, Lajolo C, Gioco G, Inchingolo F, Serpico R. Overview on osteoporosis, periodontitis and oral dysbiosis: the emerging role of oral microbiota. Appl Sci. 2020;10(17):6000. [Crossref]
  24. Do LG, Ha DH, Bell LK, Devenish G, Golley RK, Leary SD, et al. Study of Mothers' and Infants' Life Events Affecting Oral Health (SMILE) birth cohort study: cohort profile. BMJ Open. 2020;10(10):e041185. [Crossref]  [PubMed]  [PMC]
  25. Jensen ED, Selway CA, Allen G, Bednarz J, Weyrich LS, Gue S, et al. Early markers of periodontal disease and altered oral microbiota are associated with glycemic control in children with type 1 diabetes. Pediatr Diabetes. 2021;22(3):474-81. [Crossref]  [PubMed]
  26. Xiao J, Fiscella KA, Gill SR. Oral microbiome: possible harbinger for children's health. Int J Oral Sci. 2020;12(1):12. [Crossref]  [PubMed]  [PMC]
  27. Watanabe Y, Arai H, Hirano H, Morishita S, Ohara Y, Edahiro A, et al. Oral function as an indexing parameter for mild cognitive impairment in older adults. Geriatr Gerontol Int. 2018;18(5):790-8. [Crossref]  [PubMed]
  28. Tamse A, Schwartz Y. Unusual findings in heart and dental pulp in systemic primary amyloidosis. J Oral Med. 1981;36(1):16-7.
  29. Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer's disease brain tissue. J Alzheimers Dis. 2013;36(4):665-77. [Crossref]  [PubMed]
  30. Oliveira LF, Salvador SL, Silva PH, Furlaneto FA, Figueiredo L, Casarin R, et al. Benefits of Bifidobacterium animalis subsp. lactis Probiotic in Experimental Periodontitis. J Periodontol. 2017;88(2):197-208. [Crossref]  [PubMed]
  31. Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, et al. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol. 2023;14:1098386. [Crossref]  [PubMed]  [PMC]
  32. Dicks LMT, Hurn D, Hermanus D. Gut Bacteria and Neuropsychiatric Disorders. Microorganisms. 2021;9(12):2583. [Crossref]  [PubMed]  [PMC]
  33. Borre YE, O'Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509-18. [Crossref]  [PubMed]
  34. Lee Y, Kim YK. Understanding the Connection Between the Gut-Brain Axis and Stress/Anxiety Disorders. Curr Psychiatry Rep. 2021;23(5):22. [Crossref]  [PubMed]
  35. Nishino K, Nishida A, Inoue R, Kawada Y, Ohno M, Sakai S, et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J Gastroenterol. 2018;53(1):95-106. [Crossref]  [PubMed]
  36. Morais LH, Schreiber HL 4th, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241-55. [Crossref]  [PubMed]
  37. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9(2):137-50. [Crossref]  [PubMed]
  38. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519-34. [Crossref]  [PubMed]
  39. Olsen I, Hicks SD. Oral microbiota and autism spectrum disorder (ASD). J Oral Microbiol. 2019;12(1):1702806. [Crossref]  [PubMed]  [PMC]
  40. Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018;12:49. [Crossref]  [PubMed]  [PMC]
  41. Goellner E, Rocha CE. Anatomy of Trigeminal Neuromodulation Targets: From Periphery to the Brain. Prog Neurol Surg. 2020;35:18-34. [Crossref]  [PubMed]
  42. Forsythe P, Kunze W, Bienenstock J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Med. 2016;14:58. [Crossref]  [PubMed]  [PMC]
  43. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461-78. [Crossref]  [PubMed]
  44. Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2019;4(3):396-403. [Crossref]  [PubMed]  [PMC]
  45. Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:103908. [Crossref]  [PubMed]  [PMC]
  46. Suarez AN, Hsu TM, Liu CM, Noble EE, Cortella AM, Nakamoto EM, et al. Gut vagal sensory signaling regulates hippocampus function through multi-order pathways. Nat Commun. 2018;9(1):2181. [Crossref]  [PubMed]  [PMC]
  47. Evenseth LSM, Gabrielsen M, Sylte I. The GABAB Receptor-Structure, Ligand Binding and Drug Development. Molecules. 2020;25(13):3093. [Crossref]  [PubMed]  [PMC]
  48. Bharwani A, West C, Champagne-Jorgensen K, McVey Neufeld KA, Ruberto J, Kunze WA, et al. The vagus nerve is necessary for the rapid and widespread neuronal activation in the brain following oral administration of psychoactive bacteria. Neuropharmacology. 2020;170:108067. [Crossref]  [PubMed]
  49. Jain A, Madkan S, Patil P. The Role of Gut Microbiota in Neurodegenerative Diseases: Current Insights and Therapeutic Implications. Cureus. 2023;15(10):e47861. [Crossref]
  50. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, et al. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron. 2019;101(2):246-59.e6. [Crossref]  [PubMed]  [PMC]
  51. Pearson-Leary J, Zhao C, Bittinger K, Eacret D, Luz S, Vigderman AS, et al. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry. 2020;25(5):1068-79. [Crossref]  [PubMed]
  52. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23(12):1132-9. [Crossref]  [PubMed]  [PMC]
  53. Liu S, Guo R, Liu F, Yuan Q, Yu Y, Ren F. Gut Microbiota Regulates Depression-Like Behavior in Rats Through the Neuroendocrine-Immune-Mitochondrial Pathway. Neuropsychiatr Dis Treat. 2020;16:859-69. [Crossref]  [PubMed]  [PMC]
  54. Chinna Meyyappan A, Forth E, Wallace CJK, Milev R. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review. BMC Psychiatry. 2020;20(1):299. [Crossref]  [PubMed]  [PMC]
  55. Liddle RA. Parkinson's disease from the gut. Brain Res. 2018;1693(Pt B):201-6. [Crossref]  [PubMed]  [PMC]
  56. Zhang H, Chen Y, Wang Z, Xie G, Liu M, Yuan B, et al. Implications of Gut Microbiota in Neurodegenerative Diseases. Front Immunol. 2022;13:785644. [Crossref]  [PubMed]  [PMC]
  57. Claudino Dos Santos JC, Oliveira LF, Noleto FM, Gusmão CTP, Brito GAC, Viana GSB. Gut-microbiome-brain axis: the crosstalk between the vagus nerve, alpha-synuclein and the brain in Parkinson's disease. Neural Regen Res. 2023;18(12):2611-4. [Crossref]  [PubMed]  [PMC]
  58. Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016;79(6):940-9. [Crossref]  [PubMed]
  59. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014;128(6):805-20. [Crossref]  [PubMed]
  60. Clairembault T, Leclair-Visonneau L, Coron E, Bourreille A, Le Dily S, Vavasseur F, et al. Structural alterations of the intestinal epithelial barrier in Parkinson's disease. Acta Neuropathol Commun. 2015;3:12. [Crossref]  [PubMed]  [PMC]
  61. Hill AE, Wade-Martins R, Burnet PWJ. What Is Our Understanding of the Influence of Gut Microbiota on the Pathophysiology of Parkinson's Disease? Front Neurosci. 2021;15:708587. [Crossref]  [PubMed]  [PMC]
  62. Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E, Roberts AM, et al. Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans. Sci Rep. 2016;6:34477. [Crossref]  [PubMed]  [PMC]
  63. Arotcarena ML, Dovero S, Prigent A, Bourdenx M, Camus S, Porras G, et al. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain. 2020;143(5):1462-75. [Crossref]  [PubMed]
  64. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-90. [Crossref]  [PubMed]
  65. Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut Microbiota and Dysbiosis in Alzheimer's Disease: Implications for Pathogenesis and Treatment. Mol Neurobiol. 2020;57(12):5026-43. [Crossref]  [PubMed]  [PMC]
  66. Goyal D, Ali SA, Singh RK. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2021;106:110112. [Crossref]  [PubMed]
  67. Asti A, Gioglio L. Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J Alzheimers Dis. 2014;39(1):169-79. [Crossref]  [PubMed]
  68. Lee KE, Kim JK, Han SK, Lee DY, Lee HJ, Yim SV, et al. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome. 2020;8(1):107. [Crossref]  [PubMed]  [PMC]
  69. Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C, Torres-Jardón R, Nuse B, Herritt L, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol. 2008;36(2):289-310. [Crossref]  [PubMed]
  70. Calderón-Garcidueñas L, Reynoso-Robles R, Pérez-Guillé B, Mukherjee PS, Gónzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. Environ Res. 2017;159:186-201. [Crossref]  [PubMed]
  71. Kish L, Hotte N, Kaplan GG, Vincent R, Tso R, Gänzle M, et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One. 2013;8(4):e62220. [Crossref]  [PubMed]  [PMC]
  72. Yogi-Morren D, Galioto R, Strandjord SE, Kennedy L, Manroa P, Kirwan JP, et al. Duration of type 2 diabetes and very low density lipoprotein levels are associated with cognitive dysfunction in metabolic syndrome. Cardiovasc Psychiatry Neurol. 2014;2014:656341. [Crossref]  [PubMed]  [PMC]
  73. Hossain MS, Oomura Y, Fujino T, Akashi K. Glucose signaling in the brain and periphery to memory. Neurosci Biobehav Rev. 2020;110:100-13. [Crossref]  [PubMed]
  74. Fang X. Potential role of gut microbiota and tissue barriers in Parkinson's disease and amyotrophic lateral sclerosis. Int J Neurosci. 2016;126(9):771-6. [Crossref]  [PubMed]
  75. Zeng Q, Shen J, Chen K, Zhou J, Liao Q, Lu K, et al. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci Rep. 2020;10(1):12998. [Crossref]  [PubMed]  [PMC]
  76. Figueroa-Romero C, Guo K, Murdock BJ, Paez-Colasante X, Bassis CM, Mikhail KA, et al. Temporal evolution of the microbiome, immune system and epigenome with disease progression in ALS mice. Dis Model Mech. 2019;13(2):dmm041947. [Crossref]  [PubMed]  [PMC]
  77. Bataveljic D, Milosevic M, Radenovic L, Andjus P. Novel molecular biomarkers at the blood-brain barrier in ALS. Biomed Res Int. 2014;2014:907545. [Crossref]  [PubMed]  [PMC]