The Importance of Partnership with the Academy and Public Projects in the Digital Transformation of Health

Gülhas SOLMAZa, Yeliz DOĞAN MERİHa,b, Kazım Yalçın ARGAa,c

aTürkiye Sağlık Enstitüleri Başkanlığı, İstanbul, TÜRKİYE
bSağlık Bilimleri Üniversitesi Hamidiye Hemşirelik Fakültesi, Doğum, Kadın Sağlığı ve Hastalıkları Hemşireliği ABD, İstanbul, TÜRKİYE
cMarmara Üniversitesi Mühendislik Fakültesi, Biyomühendislik Bölümü, İstanbul, TÜRKİYE

ABSTRACT
Digital transformation in the field of health can be defined as the use of digital technology in the process of producing a product or a service to be used in any area of the health system and delivering it to the physician and the patient. This transformation is inherently complex, holistic, and multidisciplinary, requiring cooperation between disciplines and sectors. Economic, technical and social problems that develop due to the growing and aging population necessitate digital transformation in the field of health. In this study, the basic dynamics of digital transformation in the field of health, the benefits in terms of economic and health service quality, the needs of the COVID-19 pandemic process, the strategy to be followed in order to achieve an efficient transformation process, and the possible roles of public institutions, especially TÜBİTAK and TÜSEB, within the scope of this strategy and the importance of the public-university-industry cooperation model in digital transformation processes in the field of health were discussed. Emphasis was placed on the need to create a ‘digital transformation ecosystem in health’ under the cooperation of public, academia, industry and non-governmental organizations with a ‘national digital health strategy’ to be developed within the framework of national policies.
Keywords: Academy; digital transformation; public; partnership; health

Referanslar

  1. World Economic Forum. value in Healthcare Accelerating the Pace of Health System Transformation. ınsight Report; 2018.
  2. Ricciardi W, Barros PP, Bourek A, Brouwer W, Kelsey T, Lehtonen L et al. How to govern the digital transformation of health services. European journal of Public Health. 2019;29:7-12. [Crossref]  [PubMed]  [PMC]
  3. Park c, Otobo E, ullman j, Rogers j, Fasihuddin F, Garg S, et al. ımpact on readmission reduction among heart failure patients using digital health monitoring: feasibility and adoptability study. jMıR Medical ınformatics. 2019;7(4):133- 53. [Crossref]
  4. Gensini GF, Alderighi c, Rasoini R, Mazzanti M, casolo G. value of telemonitoring and telemedicine in heart failure management. cardiac Failure Review. 2017;3(2):116-121. [Crossref]  [PubMed]
  5. Houlton, S. How artificial intelligence is transforming healthcare. Prescriber. 2018;29:13-7. [Crossref]
  6. Nicholls M. A new artificial intelligence system. European Heart journal. 2018;39(18):1586-88. [Crossref]  [PubMed]
  7. Maor E, Sara jD, Orbelo DM, Lerman LO, Levanon Y, Lerman A. voice signal characteristics are independently associated with coronary artery disease. Mayo clinic Proceedings. 2018;93(7):840-47. [Crossref]  [PubMed]
  8. Maor E, Perry D, Mevorach D, Taiblum N, Luz Y, Mazin ı, et al. vocal biomarker is associated with hospitalization and mortality among heart failure patients. journal of the American Heart Association. 2020;9(7):e013359. [Crossref]  [PubMed]  [PMC]
  9. Amir O, Abraham WT, Azzam ZS, Anker SD, Pinney SP, Burkhoff D, et al. Speech analysis to evaluate acute heart failure patient clinical status. HFA Discoveries 2020.
  10. Leopold jA, Maron BA, Loscalzo j. The application of big data to cardiovascular disease: paths to precision medicine. The journal of clinical ınvestigation. 2020;130 (1):29-38. [Crossref]  [PubMed]  [PMC]
  11. Du Z, Yang Y, Zheng j, Li Q, Lin D, Li Y, et al. Accurate prediction of coronary heart disease for patients with hypertension from electronic health records with big data and machine-learning methods: model development and performance evaluation. jMıR Medical ınformatics. 2020;8(7):e17257. [Crossref]  [PubMed]  [PMC]
  12. Yang L, Wu H, jin X, Zheng P, Hu S, Xu X, et al. Study of cardiovascular disease prediction model based on random forest in eastern china. Scientific reports. 2020;10(1):5245. [Crossref]  [PubMed]  [PMC]
  13. Bhavnani SP, Parakh K, Atreja A, Druz R, Graham GN, Hayek SS, et al. Roadmap for ınnovation Acc health policy statement on healthcare transformation in the era of digital health, Big data and precision health: A report of the American college of cardiology Task Force on health policy statements and systems of care. journal of the American college of cardiology. 2017;70(21): 2696- 718. [Crossref]  [PubMed]
  14. World Health Organization. classification of digital health interventions v1.0. 2018 [Link]
  15. Vermişli Peker S, Yavuz van Giersbergen M, Biçersoy G. Sağlık bilişimi ve Türkiye'de hastanelerin dijitalleşmesi. Sağlık Akademisi Kastamonu. 2018;3(3):81-121. [Crossref]
  16. T.C. Sağlık Bakanlığı. Sağlıkta Dönüşüm Programı. 2007. (Erişim Tarihi: 5.10.2020) [Link]
  17. HiMSS Analytics, (Erişim Tarihi: 2.10.2020) [Link]
  18. World Health Organization. Atlas of eHealth country profiles. 2016. (Erişim Tarihi: 5.10.2020) [Link]
  19. Avaner T, Fedai R. Sağlık hizmetlerinde dijitalleşme: sağlık yönetiminde bilgi sistemlerinin kullanılması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2017;22:1533-42.
  20. Benjamin K, Potts HW. Digital transformation in government: Lessons for digital health? Digital Health. 2018;4:3-5. [Crossref]  [PubMed]  [PMC]
  21. WHO guideline: Recommendations on Digital ınterventions for Health System Strengthening. Geneva: World Health Organization; 2019.
  22. T.C. Kalkınma Bakanlığı, On Birinci Kalkınma Planı (2019-2023), Ar-Ge ve Yenilik Ekosisteminin Güçlendirilmesi, özel İhtisas Komisyonu Raporu, Ankara 2018.
  23. Deborah j. NSF, What is an ınnovation Ecosystem? (Erişim Tarihi: 5.10.2020) [Link]
  24. Jones GL, Peter Z, Rutter KA, Somauroo A. Promoting an overdue digital transformation in healthcare. McKinsey & company. 2019.
  25. 2019-20 Departmental Plan: Health canada. Ministry of Health. 2019.
  26. Digital transformation in the NHS. Session 2019-2021 (Report). Department of Health & Social care, NHS England & NHS ımprovement, NHS Digital. 2020.
  27. Marjanovic S, Krapels j, Sousa S, castleclarke S, Horvath v, chataway j. The NıHR ınvention for ınnovation (i4i) Programme: A Review of Progress and contributions to ınnovation in Healthcare Technologies. Rand health quarterly. 2015;5(2):4.
  28. Fletcher Elaine R. WHO: Global Health Expenditure Rising But Public Outlays Lag ın Low ıncome countries", Health Policy Watch, 2019. (Erişim Tarihi: 05.10. 2020) [Link]
  29. DigitalHealth.London. Towards a Digital Future in the NHS (ımpact Report). 2019.
  30. The ıQvıA ınstitute. The Growing value of Digital Health: Evidence and ımpact on Human Health and the Healthcare System (ınstitute Report). 2017.
  31. Mei, X, Lee H, Diao K, Huang M, Lin B, Liu c, et al. Artificial intelligence-enabled rapid diagnosis of patients with cOvıD-19. Nat. Med. 2020. [Crossref]  [PubMed]  [PMC]
  32. Wang S, Kang B, Ma j, Zeng X, Xiao M, Guo j, et al. A deep learning algorithm using cT images to screen for coronavirus disease (cOvıD-19). Preprint at medRxiv. 2020;28. [Crossref]
  33. Wynants L, calster Bv, collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. Br. Med. j. 2020;369:1328. [Crossref]  [PubMed]  [PMC]
  34. Laghi A. cautions about radiologic diagnosis of cOvıD-19 infection driven by artificial intelligence. Lancet Digit Health. 2020;2:e225. [Crossref]  [PubMed]
  35. Burlacu A, crisan-dabija R, Popa ıv, Artene B, Birzu v. curbing the Aı-induced enthusiasm in diagnosing cOvıD-19 on chest Xrays: the present and the near-future. Preprint at medRxiv. 2020. [Crossref]
  36. Budd j, Miller BS, Manning EM, Lampos v, Zhuang M, Edelstein M, et al. Digital technologies in the public-health response to cOvıD-19, Nature Medicine. 2020;26:1183- 92. [Crossref]  [PubMed]
  37. Geller D. How will innovation shape the world after cOvıD-19?. verisk, 2020. 38. Bozkurt A. cOvıD-19 salgını ve küresel ticaret düzenine olası etkileri. TEPAv Değerlendirme Notu. 2020;3.