THE PAST, PRESENT AND FUTURE OF GENETIC AND MOLECULAR APPROACHES TO THYROID DISEASES
Abdullah As
İstanbul Health and Technology University, Faculty of Medicine, Department of General Surgery, İstanbul, Türkiye
As A. The Past, Present and Future of Genetic and Molecular Approaches to Thyroid Diseases. Kesici U, ed. Thyroid and Parathyroid Diseases: Diagnosis, Treatment and Surgery with Current Approaches. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.79-101.
ABSTRACT
Thyroid cancer (TC) diagnosis and treatment have significantly advanced through genetic and mo- lecular research. Molecular tests, such as Afirma, ThyroSeq, and MPTX play a crucial role in differ- entiating benign from malignant thyroid nodules (TNs), thus reducing unnecessary surgeries. These molecular panels identify gene mutations and fusions in critical genes like BRAF, RAS or RET; and molecular alterations as in microRNAs (miRNAs). Thus they provide valuable information about tu- mor behavior and help guide treatment decisions. Despite their potential, the integration of genetic and molecular biomarkers into routine clinical practice, still remains a challenge. MiRNAs, small non-coding RNA molecules, have garnered attention for their role in regulating gene expression and influencing tumorigenesis. In TC, miRNAs such as miR-146b, miR-221, and miR-222 are commonly upregulated, particularly in papillary thyroid carcinoma (PTC). These miRNAs modulate tumor pro- gression by targeting tumor suppressors and activating oncogenic pathways, such as MAPK and AKT. Profiling miRNAs offers a promising diagnostic approach and can help predict prognosis, especially in aggressive or radioactive iodine-resistant (RAIR) TCs. Targeted therapies have played an important role in TC treatment. Tyrosine kinase inhibitors (TKIs), for example, have demonstrated efficacy in tumors with specific mutations like those in the RET or MEK pathways. Ongoing research are focused on discovering new mutations to enable more precise and personalized treatments, particularly for advanced or resistant cancers. Nanomedicine (NM) has become a powerful tool in cancer treatment, particularly for targeted drug delivery and diagnostic applications. Nanoparticles (NPs) can be engi- neered to selectively target tumor cells, improving treatment precision and minimizing side effects. This technology enhances the effectiveness of chemotherapy and diagnostic imaging, making it an essential component of personalized cancer care in near future. Artificial intelligence (AI) is enhancing TC diagnostics by analyzing complex datasets from imaging and pathology. AI algorithms assist in identifying actionable mutations and predicting treatment responses, advancing personalized care strat- egies. In conclusion, advancements in the understanding of genetic mutations and molecular alterations in TC have transformed the diagnosis and treatment landscape. Genetic and molecular testing, along with targeted therapies and miRNA profiling, have paved the way for more personalized and effective treatments. Although challenges remain, continued progress in these areas holds promising potential for improving TC patient outcomes.
Keywords: Thyroid nodule; Thyroid cancer; Genetic mutation; Molecular biomarker; MicroRNA; Molecular test panel; Targeted therapy; Nanoparticule
Kaynak Göster
Referanslar
- Grani G, Sponziello M, Pecce V, Ramundo V, Durante C. Contemporary thyroid nodule evaluation and management. J Clin Endocrinol Metab. 2020;105(9):2869-83. [Crossref] [PubMed] [PMC]
- Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. American Thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-133. [Crossref] [PubMed] [PMC]
- Durante C, Costante G, Lucisano G, et al.: The natural history of benign thyroid nodules. JAMA 2015;313:926-35. [Crossref] [PubMed]
- Poller DN, Glaysher S. Molecular pathology and thyroid FNA. Cytopathology 2017;28:475-81. [Crossref] [PubMed]
- Leimbach RD, Hoang TD, Shakir MKM. Diagnostic challenges of medullary thyroid carcinoma. Oncology 2021;99:422-32. [Crossref] [PubMed]
- Boucai L, Zafereo M, Cabanillas ME. Thyroid cancer: A review. JAMA 2024;331:425-35. [Crossref] [PubMed]
- Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. [Crossref] [PubMed]
- Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144(8):1941-53. [Crossref] [PubMed]
- Thyroid Cancer Statistics. Available from: [Link]
- Singh S, Singh A, Khanna AK: Thyroid incidentaloma. Indian J Surg Oncol. 2012;3:173-81. [Crossref] [PubMed] [PMC]
- Cibas ES, Ali SZ. The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 2017;27:1341-6. [Crossref] [PubMed]
- Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta Cytologica 2012;56:333-9. [Crossref] [PubMed]
- Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 Bethesda system for reporting thyroid cytopathology. Thyroid 2023;33:1039-44. [Crossref] [PubMed]
- Hundahl SA, Cady B, Cunningham MP, Mazzaferri E, McKee RF, Rosai J, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996. U.S. and German Thyroid Cancer Study Group. An American College of Surgeons Commission on Cancer Patient Care Evaluation study. Cancer 2000;89:202-17. [Crossref] [PubMed]
- Possieri C, Locantore P, Salis C, Bacci L, Aiello A, Fadda G, et al. Combined Molecular and Mathematical Analysis of Long Noncoding RNAs Expression in Fine Needle Aspiration Biopsies as Novel Tool for Early Diagnosis of Thyroid Cancer. Endocrine 2021;72(3):711-20. [Crossref] [PubMed] [PMC]
- Tang AL, Kloos RT, Aunins B, Holm TM, Roth MY, Yeh MW, et al. Pathologic features associated with molecular subtypes for well-differentiated thyroid cancer. Endocrine Pract. 2020;27(3):206-11. [Crossref] [PubMed]
- Durante C, Hegedüs L, Czarniecka A, Paschke R, Russ G, Schmitt F, Soares P, Solymosi T, Papini E. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur Thyroid J. 2023 Aug14;12(5):e230067. [Crossref] [PMC]
- Oczko-Wojciechowska M, Kotecka-Blicharz A, Krajewska J, Rusinek D, Barczynski M, Jarzab B, et al. European perspective on the use of molecular tests in the diagnosis and therapy of thyroid neoplasms. Gland. Surg. 2020;9 (Suppl. S2):69-76. [Crossref] [PubMed] [PMC]
- Moore A, Bar Y, Maurice-Dror C, Finkel I, Goldvaser H, Dudnik E, et al. Next-generation sequencing in thyroid cancers: Do targetable alterations lead to a therapeutic advantage: A multicenter experience. Medicine 2021;100:e26388. [Crossref] [PubMed] [PMC]
- Eusebi P. Diagnostic accuracy measures. Cerebrovasc Dis. 2013;36:267-72. [Crossref] [PubMed]
- Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56:45-50. [Crossref] [PubMed] [PMC]
- Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003; 95:625-27. [Crossref] [PubMed]
- Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94(6):2092-8. [Crossref] [PubMed]
- Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. New England Journal of Medicine 2012;367:705-15. [Crossref] [PubMed]
- Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98:E1852-60. [Crossref] [PubMed] [PMC]
- Desai D, Lepe M, Baloch ZW, Mandel SJ. ThyroSeq v3 for Bethesda III and IV: an institutional experience. Cancer Cytopathology 2021;129:164-70. [Crossref] [PubMed]
- Killock D. Genetics: The Cancer Genome Atlas Maps Papillary Thyroid Cancer. Nat Rev Clin Oncol. 2014;11(12):681. [Crossref] [PubMed]
- Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined Significance/ Follicular lesion of undetermined significance cytology. Thyroid 2015;25:1217-23. [Crossref] [PubMed] [PMC]
- Patel J, Klopper J, Cottrill EE. Molecular diagnostics in the evaluation of thyroid nodules: current use and prospective opportunities. Front Endocrinol (Lausanne). 2023 Feb 24;14:1101410. [Crossref] [PubMed] [PMC]
- Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, et al. Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. JAMA Surg. 2018;153:817-24. [Crossref] [PubMed] [PMC]
- Angell TE, Wirth LJ, Cabanillas ME, et al Analytical and Clinical Validation of Expressed Variants and Fusions From the Whole Transcriptome of Thyroid FNA Samples. Front Endocrinol (Lausanne). 2019 Sep 11;10:612. [Crossref] [PubMed] [PMC]
- Wu JX, Young S, Hung ML, Li N, Yang SE, Cheung DS, et al. Clinical Factors Influencing the Performance of Gene Expression Classifier Testing in Indeterminate Thyroid Nodules. Thyroid 2016;26(7):916-22. [Crossref] [PubMed]
- Wu C, Schwartz JM, Brabant G, Nenadic G. Molecular profiling of thyroid cancer subtypes using large-scale text mining. BMC Med Genomics 2014;7:3. [Crossref] [PubMed] [PMC]
- Nishino M, Krane JF. Role of Ancillary Techniques in Thyroid Cytology Specimens. Acta Cytol. 2020:64:40-51. [Crossref] [PubMed]
- Nikiforov YE, Nikiforova MN. Molecular Genetics and Diagnosis of Thyroid Cancer. Nat Rev Endocrinol. 2011;7(10):569-80. [Crossref] [PubMed]
- Rossi ED, Locantore P, Bruno C, Dell'Aquila M, Tralongo P, Curatolo M, et al. Molecular Characterization of Thyroid Follicular Lesions in the Era of "Next-Generation" Techniques. Front. Endocrinol. 2022;13:834456. [Crossref] [PubMed] [PMC]
- The Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014;159: 676-90. [Crossref] [PubMed] [PMC]
- Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N, Sponziello M. Update on Fundamental Mechanisms of Thyroid Cancer. Front Endocrinol. 2020;11:102. [Crossref] [PubMed] [PMC]
- Scheffel RS, de Cristo AP, Romitti M, Vargas CVF, Ceolin L, Zanella AB, et al. The BRAFV600E mutation analysis and risk stratification in papillary thyroid carcinoma. Arch Endocrinol Metab. 2021;64(6):751-7. [Crossref] [PMC]
- Chakravarty D, Santos E, Ryder M, Knauf JA, Liao X-H, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. Journal of Clinical Investigation 2011;121:4700-11. [Crossref] [PubMed] [PMC]
- Zaman A, Wu W, Bivona TG. Targeting oncogenic BRAF: past, present, and future. Cancers (Basel) 2019;11:1197. [Crossref] [PubMed] [PMC]
- Song JY, Sun SR, Dong F, Huang T, Wu B, Zhou J. Predictive Value of BRAFV600E Mutation for Lymph Node Metastasis in Papillary Thyroid Cancer: A Meta-analysis. Curr Med Sci. 2018; 38:785-97. [Crossref] [PubMed]
- Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33: 42-50. [Crossref] [PubMed] [PMC]
- Liu X, et al. Highly prevalent tert promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 2013;20:603-10. [Crossref] [PubMed] [PMC]
- Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ Jr, et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021;31(3):337-86. Erratum in: Thyroid. 2021;31(10):1606-1607. [Crossref] [PubMed] [PMC]
- Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005;12(2):245-62. [Crossref] [PubMed]
- Murugan AK, Qasem E, Al-Hindi H, Shi Y, Alzahrani AS. Classical V600E and other non-hotspot BRAF mutations in adult diferentiated thyroid cancer. J Transl Med. 2016;14(1):204. [Crossref] [PubMed] [PMC]
- Zhou SL, Guo YP, Zhang L, Deng T, Xu ZG, Ding C, et al. Predicting factors of central lymph node metastasis and BRAF(V600E) mutation in Chinese population with papillary thyroid carcinoma. World J Surg Oncol. 2021;19(1):211. [Crossref] [PubMed] [PMC]
- Nikiforov, Y.E. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135:569-77. [Crossref] [PubMed]
- Melo M, et al. Tert promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99: E754-65. [Crossref] [PubMed] [PMC]
- Paulson VA, Shivdasani P, Angell TE, Cibas ES, Krane JF, Lindeman NI, et al. Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features Accounts for More Than Half of "Carcinomas" Harboring RAS Mutations. Thyroid 2017;27:506-11. [Crossref] [PubMed]
- Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N, Sponziello, M. Update on Fundamental Mechanisms of Thyroid Cancer. Front Endocrinol. 2020;11:102. [Crossref] [PubMed] [PMC]
- Xing M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Med. 2016;14:12. [Crossref] [PubMed] [PMC]
- Cohen DS, Tongson-Ignacio JE, Lolachi CM, Ghaderi VS, Jahan-Parwar B, Thompson LDR. Rethinking Malignancy Risk in Indeterminate Thyroid Nodules with Positive Molecular Studies: Southern California Permanente Experience. Otolaryngol Head Neck Surg. 2019;161:419-23. [Crossref] [PubMed]
- Valderrabano P, Eszlinger M, Stewardson P, Paschke R. Clinical value of molecular markers as diagnostic and prognostic tools to guide treatment of thyroid cancer. Clin Endocrinol. (Oxf) 2023;98(6):753-62. [Crossref] [PubMed]
- Goldner WS, Angell TE, McAdoo SL, et al. Molecular variants and their risks for malignancy in Cytologically Indeterminate thyroid nodules. Thyroid 2019;29(11):1594-605. [Crossref] [PubMed] [PMC]
- Gilani SM, Abi-Raad R, Garritano J, Cai G, Prasad ML, Adeniran AJ. RAS mutation and associated risk of malignancy in the thyroid gland: an FNA study with cytology-histology correlation. Cancer Cytopathol. 2022;130(4):284-93. [Crossref] [PubMed] [PMC]
- Laha D, Nilubol N, Boufraqech M. New Therapies for Advanced Thyroid Cancer. Front Endocrinol. 2020;11:82. [Crossref] [PubMed] [PMC]
- Nikiforov YE. Role of Molecular Markers in Thyroid Nodule Management: Then and Now. Endocr Pract. 2017;23(8):979-988. Epub 2017 May 23. Erratum in: Endocr Pract. 2017;23(11):1362. [Link]
- Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. ESMO Guidelines Committee. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:1856-83. [Crossref] [PubMed]
- Machens A, Dralle H. Long-term outcome after DNA-based prophylactic neck surgery in children at risk of hereditary medullary thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2019; 33:101274. [Crossref] [PubMed]
- Pekova B, Dvorakova S, Sykorova V, Vacinova G, Vaclavikova E, Moravcova J, et al. Somatic genetic alterations in a large cohort of pediatric thyroid nodules. Endocr Connect. 2019;8: 796-805. [Crossref] [PubMed] [PMC]
- Zitzelsberger H, Bauer V, Thomas G, Unger K. Molecular rearrangements in papillary thyroid carcinomas. Clin Chim Acta 2010;411:301-8. [Crossref] [PubMed]
- Paschke R, Cantara S, Crescenzi A, Jarzab B, Musholt TJ, Sobrinho Simoes M. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur Thyroid J. 2017;6:115-29. [Crossref] [PubMed] [PMC]
- Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8:69. [Crossref] [PubMed] [PMC]
- Yuan X, Yuan H, Zhang N, Liu T, Xu D. Thyroid carcinoma-featured telomerase activation and telomere maintenance: biology and translational/clinical significance. Clin Transl Med 2022;12:e1111. [Crossref] [PubMed] [PMC]
- Low KC, Tergaonkar V. Telomerase: Central regulator of all of the hallmarks of cancer. Trends Biochem Sci. 2013;38:426-34. [Crossref] [PubMed] [PMC]
- Gopal RK, Kübler K, Calvo SE, et al. Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in hurthle cell arcinoma. Cancer Cell 2018;34:242-55. [Crossref] [PubMed] [PMC]
- Ganly I, Makarov V, Deraje S, et al. Integrated genomic analysis of hurthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell 2018;34:256-70. [Crossref] [PubMed] [PMC]
- Asya O, Yumusakhuylu AC, Bagcı P, Kaya H, Gonen A, Gundogdu Y, et al. Relationship of PPARG overexpression with prognostic parameters in papillary thyroid carcinoma. Acta Otorhinolaryngol Ital. 2022;42:34-40. [Crossref] [PubMed] [PMC]
- Mitsiades N, Fagin JA. Molecular Genetics of Thyroid Cancer: Pathogenetic Significance and Clinical Applications. In Genetic Diagnosis of Endocrine Disorders, 1st ed.; Weiss, R.E., Refetoff, S., Eds.; Elsevier: London, UK, 2010; p.117-38. [Crossref]
- Pekova B, Sykorova V, Mastnikova K, Vaclavikova E, Moravcova J, Vlcek P, et al. NTRK Fusion Genes in Thyroid Carcinomas: Clinicopathological Characteristics and Their Impacts on Prognosis. Cancers 2021;13: 1932. [Crossref] [PubMed] [PMC]
- Yip L, Nikiforova MN, Yoo JY, McCoy KL, Stang MT, Armstrong MJ, et al. Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: A study of 1510 patients. Ann Surg. 2015;262: 519-25; discussion 524-25. [Crossref] [PubMed] [PMC]
- Pelizzo MR, Boschin IM, Barollo S, Pennelli G, Toniato A, Zambonin L, et al. BRAF analysis by fine needle aspiration biopsy of thyroid nodules improves preoperative identifcation of papillary thyroid carcinoma and represents a prognostic factor. A mono-institutional experience. Clin Chem Lab Med. 2011;49(2):325-29. [Crossref] [PubMed]
- Chakravarty D, Santos E, Ryder M, Knauf JA, Liao X-H, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. Journal of Clinical Investigation. 2011;121:4700-11. [Crossref] [PubMed] [PMC]
- Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol. 2010;321(1):86-93. [Crossref] [PubMed] [PMC]
- Li GY, Tan HL, Chen P, Hu HY, Liu M, Ou-Yang DJ, et al. Predictive Factors for Level V Lymph Node Metastases in Papillary Thyroid Carcinoma with BRAF(V600E) Mutation and Clinicopathological Features. Cancer Manag Res. 2020;12:3371-8. [Crossref] [PubMed] [PMC]
- Goh X, Lum J, Yang SP, Chionh SB, Koay E, Chiu L, et al. BRAF mutation in papillary thyroid cancer-Prevalence and clinical correlation in a South-East Asian cohort. Clin Otolaryngol. 2019;44(2):114-23. [Crossref] [PubMed]
- Baloch ZW, Asa SL, Barletta JA Ghossein RA, Juhlin CC, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022;33:27-63. [Crossref] [PubMed]
- Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28(7):742-62. [Crossref] [PubMed]
- Ahn B-C. Personalized medicine based on theranostic radioiodine molecular imaging for differentiated thyroid cancer. Biomed Res Int. 2016;2016:1-9. [Crossref] [PubMed] [PMC]
- Fullmer T, Cabanillas ME, Zafereo M. Novel therapeutics in radioactive iodine-resistant thyroid cancer. Front Endocrinol. (Lausanne) 2021;12:720-3. [Crossref] [PubMed] [PMC]
- Mu Z, et al. Risk stratification for radioactive iodine refractoriness using molecular alterations in distant metastatic differentiated thyroid cancer. Chin J Cancer Res. 2024;36,:25-35. [Crossref] [PubMed] [PMC]
- Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M, Santisteban P. The oncogene braf v600e is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of na+/i-targeting to the membrane. Endocr Relat Cancer 2006;13:257-69. [Crossref] [PubMed]
- Mu ZZ, Zhang YQ Sun D, Lu T, Lin YS. Effect of brafv600e and tert promoter mutations on thyroglobulin response in patients with distant-metastatic differentiated thyroid cancer. Endocr Pract. 2022;28:265-70. [Crossref] [PubMed]
- Yang X, et al. Tert promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer. J Nucl Med. 2017;58: 258-65. [Crossref] [PubMed]
- Soe MH, et al. Non-iodine-avid disease is highly prevalent in distant metastatic differentiated thyroid cancer with papillary histology. J Clin Endocrinol Metab. 2022;107:e3206- 16. [Crossref] [PubMed] [PMC]
- Schmidbauer B, Menhart K, Hellwig D, Grosse J. Differentiated thyroid cancer-treatment: state of the art. Int J Mol Sci. 2017;18:1292. [Crossref] [PubMed] [PMC]
- Dunn LA, Sherman EJ, Baxi SS, Tchekmedyian V, Grewal RK, Larson SM, et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers. J Clin Endocrinol Metab. 2019;104:1417-28. [Crossref] [PubMed] [PMC]
- Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. The Lancet 2014;384:319-28. [Crossref] [PubMed]
- Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621- 30. [Crossref] [PubMed]
- Chakravarty D, Santos E, Ryder M, Knauf JA, Liao X-H, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. Journal of Clinical Investigation 2011;121:4700-11. [Crossref] [PubMed] [PMC]
- Rothenberg SM, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib-response. Clin Cancer Res.2015;21:5640-1. [Crossref] [PubMed]
- Buffet C, Wassermann J, Hecht F, Leenhardt L, Dupuy C, Groussin L, et al. Redifferentiation of radioiodine-refractory thyroid cancers. Endocr Relat Cancer 2020;27:113-32. [Crossref] [PubMed]
- Korneeva NL, Song A, Gram H, Edens MA, Rhoads RE. Inhibition of mitogen-activated protein kinase (mapk)-interacting kinase (mnk) preferentially affects translation of mrnas containing both a 5'-terminal cap and hairpin. J Biol Chem. 2016;291:3455-67. [Crossref] [PubMed] [PMC]
- Shen H, et al. Radioiodine-refractory differentiated thyroid cancer: molecular mechanisms and therapeutic strategies for radioiodine resistance. Drug Resist Updat. 2024;72:101013. [Crossref] [PubMed]
- Goldner WS, Angell TE, McAdoo SL, et al. Molecular variants and their risks for malignancy in Cytologically Indeterminate thyroid nodules. Thyroid 2019;29(11):1594-605. [Crossref] [PubMed] [PMC]
- Liu R, Bishop J, Zhu G, Zhang T, Ladenson PW, Xing M. Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer. JAMA Oncol. 2017;3:202. [Crossref] [PubMed]
- Liu X, Qu S, Liu R, Sheng C, Shi X, Zhu G; et al. TERT promoter mutations and Their Association with BRAF V600E Mutation and Aggressive Clinicopathological Characteristics of Thyroid Cancer. J Clin Endocrinol Metab. 2014; 99: E1130-6. [Crossref] [PubMed] [PMC]
- Zhao L, Wang L, Jia X, Hu X, Pang P, Zhao S, et al. The coexistence of genetic mutations in thyroid carcinoma predicts histopathological factors associated with a poor prognosis: A systematic review and network meta-analysis. Front Oncol. 2020;10:540238. [Crossref] [PubMed] [PMC]
- Song J, et al. A somatic mutation of rasgrp3 decreases na(+)/i(-) symporter expression in metastases of radioactive iodine-refractory thyroid cancer by stimulating the akt signaling pathway. Am J Cancer Res. 2018;8: 1847-55. [PMC]
- Dong X.,et al. Major vault protein (mvp) associated with braf (v600e) mutation is an immune microenvironment-related biomarker promoting the progression of papillary thyroid cancer via mapk/erk and pi3k/akt pathways. Front Cell Dev Biol. 2021;9: 688370. [Crossref] [PubMed] [PMC]
- Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014;32: 2718-26. [Crossref] [PubMed] [PMC]
- Asa SL, Giordano TJ, LiVolsi VA. Implications of the TCGA genomic characterization of papillary thyroid carcinoma for thyroid pathology: Does follicular variant papillary thyroid carcinoma exist? Thyroid 2015;25:1-2. [Crossref] [PubMed]
- Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016;12: e1006239. [Crossref] [PubMed] [PMC]
- Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, Frates MC, Benson CB, et al. The Variable Phenotype and Low-Risk Nature of RAS-Positive Thyroid Nodules. BMC Med. 2015;13:184. [Crossref] [PubMed] [PMC]
- Lloyd RV, Osamura RY, Kloppel G, Rosai J. Chapter 2 Tumours of the thyroid gland. In WHO Classification of Tumours of Endocrine Organs, 4th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2017;65-143. [CrossRef] [Link]
- Wong KS, Angell TE, Strickland KC, Alexander EK, Cibas ES, Krane JF, et al. Noninvasive Follicular Variant of Papillary Thyroid Carcinoma and the Afirma Gene Expression Classifier. Thyroid 2016;26:911-5. [Crossref] [PubMed]
- Zhou H, Baloch ZW, Nayar R, Bizzarro T, Fadda G, Adhikari-Guragain D, et al. Noninvasive Follicular Thyroid Neoplasm With Papillary-Like Nuclear Features (NIFTP): Implications for the Risk of Malignancy (ROM) in the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). Cancer Cytopathol. 2018;126(1):20-6. [Crossref] [PubMed]
- Faquin WC, Wong LQ, Afrogheh AH, Ali S, Bishop J, Bongiovanni M, et al. Impact of Reclassifying Noninvasive Follicular Variant of Papillary Thyroid Carcinoma on the Risk of Malignancy in the Bethesda System for ReportingThyroid Cytopathology. Cancer Cytopathol. 2016;124:181- 7. Epub 2015 Oct 12. [Crossref] [PubMed]
- Bischoff LA, Ganly I, Fugazzola L, Buczek E, Faquin WC, Haugen BR, et al. Molecular Alterations and Comprehensive Clinical Management of Oncocytic Thyroid Carcinoma: A Review and Multidisciplinary 2023 Update. JAMA Otolaryngol Head Neck Surg. 2024;150:265-72. [Crossref] [PubMed]
- Rajab M, Payne RJ, Forest VI, Pusztaszeri M. Molecular Testing for Thyroid Nodules: The Experience at McGill University Teaching Hospitals in Canada. Cancers 2022;14: 4140. [Crossref] [PubMed] [PMC]
- Ganly I, Makarov V, Deraje S, Dong Y, Reznik E, Seshan V, et al. Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell 2018;34:256-70. [Crossref] [PubMed] [PMC]
- Doerfler WR, Nikitski AV, Morariu EM, Ohori NP, Chiosea SI, Landau MS, et al. Molecular Alterations in Hürthle Cell Nodules and Preoperative Cancer Risk. Endocr Relat Cancer 2021;28:301-9. [Crossref] [PubMed]
- Wei S, LiVolsi VA, Montone KT, Morrissette JJD, Baloch ZW. PTEN and TP53 Mutations in Oncocytic Follicular Carcinoma. Endocr Pathol. 2015;26:365-9. [Crossref] [PubMed]
- Kure S, Ohashi R. Thyroid Hürthle Cell Carcinoma: Clinical, Pathological, and Molecular Features. Cancers 2021;13:26. [Crossref] [PubMed] [PMC]
- Nikiforov YE, Baloch ZW. Clinical Validation of the ThyroSeq v3 Genomic Classifier in Thyroid Nodules with Indeterminate FNA Cytology. Cancer Cytopathol. 2019;127: 225-30. [Crossref] [PubMed] [PMC]
- Panebianco F, Nikitski AV, Nikiforova MN, Nikiforov YE. Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer. Cancer Med. 2019;8:5831-9. [Crossref] [PubMed] [PMC]
- Schumm MA, Shu ML, Hughes EG, Nikiforov YE, Nikiforova MN, Wald AI, et al. Prognostic Value of Preoperative Molecular Testing and Implications for Initial Surgical Management in Thyroid Nodules Harboring Suspected (Bethesda V) or Known (Bethesda VI) Papillary Thyroid Cancer. JAMA Otolaryngol Head Neck Surg. 2023;149:735-42. [Crossref] [PubMed] [PMC]
- Yip L, Gooding WE, Nikitski A, Wald AI, Carty E, Karslioglu-French E, et al. Risk assessment for distant metastasis in differentiated thyroid cancer using molecular profiling: A matched case-control study. Cancer 2021;127:1779-87. [Crossref] [PubMed] [PMC]
- Liu JB, Baugh KA, Ramonell KM, McCoy KL, Karslioglu-French E, Morariu EM, et al. Molecular Testing Predicts Incomplete Response to Initial Therapy in Differentiated Thyroid Carcinoma Without Lateral Neck or Distant Metastasis at Presentation: Retrospective Cohort Study. Thyroid 2023;33:705-14. [Crossref] [PubMed]
- Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol. 2004;15:319-27. [Crossref] [PubMed]
- Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah R, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Investig. 2016;126:1052-66. [Crossref] [PubMed] [PMC]
- Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014;159:676-90. [Crossref] [PubMed] [PMC]
- Romei C, Fugazzola L, Puxeddu E, Frasca F, Viola D, Muzza M, et al. Modifications in the papillary thyroid cancer gene profile over the last 15 years. J Clin Endocrinol Metab. 2012;97:E1758-65. [Crossref] [PubMed]
- Sabra MM, Dominguez JM, Grewal RK, Larson SM, Ghossein RA, Tuttle RM, et al. Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases. J Clin Endocrinol Metab. 2013;98:E829-36. [Crossref] [PubMed] [PMC]
- Scheffel RS, Cristo AP de, Romitti M, Vargas CVF, Ceolin L, Zanella AB, et al. The BRAFV600E mutation analysis and risk stratification in papillary thyroid carcinoma Arch Endocrinol Metab. 2021;64(6):751-7. [Crossref] [PMC]
- Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 2016;126:1052-66. [Crossref] [PubMed] [PMC]
- Chen B, Shi Y, Xu Y, Zhang J. The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: A systematic review and meta-analysis. Clin Endocrinol. 2021;94:731-42. [Crossref] [PubMed]
- Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98:E1562-6. [Crossref] [PubMed] [PMC]
- Moon S, Song YS, Kim YA, Lim JA, Cho SW, Moon JH, et al. Effects of coexistent BRAF(V600E) and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis. Thyroid 2017;27:651-60. [Crossref] [PubMed]
- Yuan X, Yuan H, Zhang N, Liu T, Xu D. Thyroid carcinoma-featured telomerase activation and telomere maintenance: biology and translational/clinical significance. Clin Transl Med. 2022;12:e1111. [Crossref] [PubMed] [PMC]
- Schmidt A, Iglesias L, Klain M, Pitoia F, Schlumberger MJ. Radioactive iodine-refractory differentiated thyroid cancer: an uncommon but challenging situation. Arch Endocrinol Metab. 2017;61:81-9. [Crossref] [PubMed] [PMC]
- Leimbach RD, Hoang TD, Shakir MKM. Diagnostic challenges of medullary thyroid carcinoma. Oncology 2021;99:422-32. [Crossref] [PubMed]
- Larouche V, Akirov A, Thomas CM, Krzyzanowska MK, Ezzat S. A primer on the genetics of medullary thyroid cancer. Curr Oncol. 2019;26, 389-94. [Crossref] [PubMed] [PMC]
- Pavlidis E, Sapalidis K, Chatzinikolaou F, Kesisoglou I. Medullary thyroid cancer: Molecular factors, management and treatment. Rom J Morphol Embryol. 2020;61:681-6. [Crossref] [PubMed] [PMC]
- Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016;12:192-202. [Crossref] [PubMed]
- Moura MM, Cavaco BM, Leite V. RAS proto-oncogene in medullary thyroid carcinoma. Endocr Relat Cancer 2015;22:235-52. [Crossref] [PubMed]
- Elisei R, Tacito A, Ramone T, Ciampi R, Bottici V, Cappagli V, et al. Twenty-Five Years Experience on RET Genetic Screening on Hereditary MTC: An Update on The Prevalence of Germline RET Mutations. Genes 2019;10: 698. [Crossref] [PubMed] [PMC]
- Minna E Romeo P, Dugo M, De Cecco L, Aiello A, Pistore F, et al. Medullary thyroid carcinoma mutational spectrum update and signaling-type inference by transcriptional profiles: Literature meta-analysis and study of tumor samples. Cancers 2022;14:1951. [Crossref] [PubMed] [PMC]
- Lubitz CC, Sadow PM, Daniels GH, Wirth LJ. Progress in treating advanced thyroid cancers in the era of targeted therapy. Thyroid 2021;31:1451-62. [Crossref] [PubMed] [PMC]
- Romano C, Martorana F, Pennisi MS, Stella S, Massimino M, Tirrò E, et al. Opportunities and Challenges of Liquid Biopsy in Thyroid Cancer. Int J Mol Sci. 2021;22:7707. [Crossref] [PubMed] [PMC]
- Galuppini F, Censi S, Moro M, Carraro S, Sbaraglia M, Iacobone M, et al. MicroRNAs in medullary thyroid carcinoma: A state of the art review of the regulatory mechanisms and future perspectives. Cells 2021;10,:955. [Crossref] [PubMed] [PMC]
- Ciarletto AM, Narick C, Malchoff CD, Massoll NA, Labourier E, Haugh K, et al. Analytical and clinical validation of pairwise microRNA expression analysis to identify medullary thyroid cancer in thyroid fine-needle aspiration samples. Cancer Cytopathol. 2021;129:239-49. [Crossref] [PubMed] [PMC]
- Cote G.J, Evers C, Hu MI, Grubbs EG, Williams MD, Hai T, et al. Prognostic Significance of Circulating RET M918T Mutated Tumor DNA in Patients with Advanced Medullary Thyroid Carcinoma. J Clin Endocrinol Metab. 2017;102:3591-9. [Crossref] [PubMed] [PMC]
- Wells SA, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised American thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015;25:567-610. [Crossref] [PubMed] [PMC]
- Wells SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J Clin Oncol. 2012;30:134-41. [Crossref] [PubMed] [PMC]
- Kreissl MC, Bastholt L, Elisei R, Haddad R, Hauch O, Jarzab, B, et al. Efficacy and safety of vandetanib in progressive and symptomatic medullary thyroid cancer: Post hoc analysis From the ZETA trial. J Clin Oncol. 2020;38:2773-81. [Crossref] [PubMed] [PMC]
- Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-art strategies for targeting RET-dependent cancers. J Clin Oncol. 2020;38:1209-21. [Crossref] [PubMed] [PMC]
- Bartz-Kurycki MA, Oluwo OE, Morris-Wiseman LF. Medullary thyroid carcinoma: Recent advances in identification, treatment, and prognosis. Ther Adv Endocrinol Metab. 2021;12: 20420188211049611. [Crossref] [PubMed] [PMC]
- Subbiah V, Shen T, Terzyan SS, Liu X, Hu X, Patel KP, et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann Oncol. 2021;32:261-8. [Crossref] [PubMed] [PMC]
- Penfornis P, Vallabhaneni KC, Whitt J, Pochampally R. Extracellular vesicles as carriers of microRNA, proteins and lipids in tumor microenvironment. Int J Cancer. 2016;138:14-21. [Crossref] [PubMed] [PMC]
- Silaghi CA, Lozovanu V, Georgescu CE, Georgescu RD, Susman S, Năsui BA, et al. Thyroseq v3, Afirma GSC, and microRNA Panels Versus Previous Molecular Tests in the Preoperative Diagnosis of Indeterminate Thyroid Nodules: A Systematic Review and Meta-Analysis. Front Endocrinol. 2021;12: 649522. [Crossref] [PubMed] [PMC]
- Ghafouri-Fard S, Shirvani-Farsani Z, Taheri M. The role of microRNAs in the pathogenesis of thyroid cancer. Noncoding RNA Res. 2020;5:88-98. [Crossref] [PubMed] [PMC]
- Celano M, Rosignolo F, Maggisano V, Pecce V, Iannone M, Russo D, etal. MicroRNAs as Biomarkers in Thyroid Carcinoma. Int J Genom. 2017:2017:6496570. [Crossref] [PubMed] [PMC]
- Wójcicka A, Kolanowska M, Jazdzewski K. Mechanisms in Endocrinology: MicroRNA in diagnostics and therapy of thyroid ̇cancer. Eur J Endocrinol. 2016;174:89-98. [Crossref] [PubMed]
- Ludvíková M, Kalfert D, Kholová I. Pathobiology of MicroRNAs and Their Emerging Role in Thyroid Fine-Needle Aspiration Acta Cytol. 2015;59: 435-44. [Crossref] [PubMed]
- Santos MT, Rodrigues BM, Shizukuda S, Oliveira AF, Oliveira M, Figueiredo DL, et al. Clinical decision support analysis of a microRNA-based thyroid molecular classifier: A real-world, prospective and multicentre validation studies. EBioMedicine 2022;82:104137. [Crossref] [PubMed] [PMC]
- Chen Y, Dong B, Huang L, Huang H. Serum microRNAs as biomarkers for the diagnosis of papillary thyroid carcinoma: A meta-analysis. Bosn J Basic Med Sci. 2022;22:862-71. [Crossref] [PubMed] [PMC]
- Jin J, Zhang J, Xue Y, Luo L, Wang S, Tian H. miRNA-15a regulates the proliferation and apoptosis of papillary thyroid carcinoma via regulating AKT pathway. OncoTargets Ther. 2019;12:6217-26. [Crossref] [PubMed] [PMC]
- Yan M, Li X, Tong D, Han C, Zhao R, He Y, et al. MiR136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep. 2016;36:65-71. [Crossref] [PubMed] [PMC]
- Niu J, Li Z, Li F. Overexpressed microRNA-136 works as a cancer suppressor in gallbladder cancer through suppression of JNK signaling pathway via inhibition of MAP2K4. Am J Physiol Gastrointest Liver Physiol. 2019;317:670-81. [Crossref] [PubMed]
- Mian C, Pennelli G, Fassan M, Balistreri M, Barollo S, Cavedon E, et al. MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: Preliminary relationships with RET status and outcome. Thyroid 2012;22:890-6. [Crossref] [PubMed] [PMC]
- Wang Y, Lin Y. Hsa-mir-127 impairs survival of patients with glioma and promotes proliferation, migration and invasion of cancerous cells by modulating replication initiator 1. Neuroreport 2018;29:1166-73. [Crossref] [PubMed]
- Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA Expression Profiling of Thyroid Tumors: Biological Significance and Diagnostic Utility. J Clin Endocrinol Metab. 2008;93:1600-8. [Crossref] [PubMed] [PMC]
- Boufraqech M, Klubo-Gwiezdzinska J, Kebebew E. MicroRNAs in the thyroid. BestPract Res Clin Endocrinol Metab. 2016;30:603-19. [Crossref] [PubMed] [PMC]
- Castagna MG, Marzocchi C, Pilli T, Forleo R, Pacini F, Cantara S. MicroRNA expression profile of thyroid nodules in fine-needle aspiration cytology: A confirmatory series. J Endocrinol Investig. 2019;42:97-100. [Crossref] [PubMed]
- Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Fusco A. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 levels and cell cycle. Endocr Relat Cancer 2007;14:791-8. [Crossref] [PubMed]
- Zhang ZJ. Xiao Q, Li XY. MicroRNA-574-5p directly targets FOXN3 to mediate thyroid cancer progressionvia Wnt/β-catenin signaling pathway. Pathology-Research and Practice 2020;216(6):152939. Epub 2020 Mar 31. [Crossref] [PubMed]
- Wang S, Wu J, Ren J, Vlantis AC, Li MY, et al. MicroRNA-125b interacts with Foxp3 to induce autophagy in thyroid cancer. Molecular Therapy 2018;26(9):2295-303. [Crossref] [PubMed] [PMC]
- Wójcicka A, Kolanowska M, Jażdżewski K. Mechanisms in endocrinology: MicroRNA in diagnostics and therapy of thyroid cancer. European Journal of Endocrinology 2016;174(3):89-98. [Crossref] [PubMed]
- Ricci C, Salvemini A, Dalmiglio C, Castagna MG, Cantara S. From circulating tumor cells to mirna: New challenges in the diagnosis and prognosis of medullary thyroid cancer. Cancers 2023;15(15): 4009. [Crossref] [PubMed] [PMC]
- Besharat ZM, Trocchianesi S, Verrienti A, Ciampi R, Cantara S, et al. Circulating miR-26b-5p and miR-451a as diagnostic biomarkers in medullary thyroid carcinoma patients. Journal of Endocrinological Investigation 2023;46(12):2583-99. [Crossref] [PubMed] [PMC]
- Santarpia L, Calin GA, Adam L, Ye L, Fusco A, et al. A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocrine-Related Cancer 2013;20(6):809-23. [Crossref] [PubMed]
- Fu X, Fang J, Lian M, Zhong Q, Ma HZ, et al. Identification of microRNAs associated with medullary thyroid carcinoma by bioinformatics analyses. Molecular Medicine Reports 2017;15(6):4266-72. [Crossref] [PubMed]
- Joo LJS, Weiss J, Gill AJ, Clifton-Bligh R, Brahmbhatt H, et al. RET kinase-regulated microRNA-153-3p improves therapeutic efficacy in medullary thyroid carcinoma. Thyroid 2019;29(6):830-44. [Crossref] [PubMed]
- Park, J.-L.; Kim, S.-K.; Jeon, S.; Jung, C.-K.; Kim, Y.-S. MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer. Cancers 2021;13(4):632. [Crossref] [PubMed] [PMC]
- Ruiz-Pozo VA, Cadena-Ullauri S, Guevara-Ramírez P, PazCruz E, Tamayo-Trujillo R, Zambrano AK. Differential microRNA expression for diagnosis and prognosis of papillary thyroid cancer. Rev Front Med. 2023;10:1139362. [Crossref] [PubMed] [PMC]
- Tan W, Liu B, Qu S, Liang G, Luo W, et al. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncology Letters 2018;15(3):2735-42. [Crossref] [PMC]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Thyroid Carcinoma Version 2.2014. Fort Washington, Pa: National Comprehensive Cancer Network 2014:p7-25. [CrossRef]. [Link]
- Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative Diagnosis of Benign Thyroid Nodules With Indeterminate Cytology. N Engl J Med 2012;367:70515. [Crossref] [PubMed]
- Wu JX, Young S, Hung ML, Li N, Yang SE, Cheung DS, et al. Clinical Factors Influencing the Performance of Gene Expression Classifier Testing in Indeterminate Thyroid Nodules. Thyroid 2016;26(7):916-22. [Crossref] [PubMed]
- Angell TE, Wirth LJ, Cabanillas ME, Shindo ML, Cibas ES, Babiarz JE, et al. Analytical and Clinical Validation of Expressed Variants and Fusions From the Whole Transcriptome of Thyroid FNA Samples. Front Endocrinol (Lausanne). 2019;10:612. [Crossref] [PubMed] [PMC]
- Krane JF, Cibas ES, Endo M, Marqusee E, Hu MI, Nasr CE, et al. The Afirma Xpression Atlas for thyroid nodules and thyroid cancer metastases: Insights to inform clinical decision-making from a fine-needle aspiration sample. Cancer Cytopathol. 2020;128(7):452-9. [Crossref] [PubMed] [PMC]
- Endo M, Nabhan F, Porter K, Roll K, Shirley LA, Azaryan I, et al. Afirma Gene Sequencing Classifier Compared With Gene Expression Classifier in Indeterminate Thyroid Nodules. Thyroid 2019;29(8):1115- 24. [Crossref] [PubMed] [PMC]
- Harrell RM, Eyerly-Webb SA, Golding AC, Edwards CM, Bimston DN. Statistical Comparison of Afirma GSC and Afirma GEC Outcomes in a Community Endocrine Surgical Practice: Early Findings. Endocr Pract 2019; 25(2):161-4. [Crossref] [PubMed]
- Patel KN, Angell TE, Babiarz J, Barth N, Blevis T, Duh QY, et al. Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. JAMA Surg 2018;153(9):817-24. [Crossref] [PubMed] [PMC]
- Randolph GW, Sosa JA, Hao Y, Angell TE, Shonka DcJr., LiVolsi VA, et al. Preoperative identification of medullary thyroid carcinoma (MTC): Clinical validation of the afirma MTC RNA-sequencing classifier. Thyroid 2022;32:1069-76. [Crossref] [PubMed] [PMC]
- Geng Y, Aguilar-Jakthong JS, Moatamed NA. Comparison of Afirma Gene Expression Classifier With Gene Sequencing Classifier in Indeterminate Thyroid Nodules: A Single-Institutional Experience. Cytopathology 2021;32(2):187-91. [Crossref] [PubMed]
- Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly Accurate Diagnosis of Cancer in Thyroid Nodules With Follicular Neoplasm/Suspicious for a Follicular Neoplasm Cytology by ThyroSeq V2 Next-Generation Sequencing Assay. Cancer 2014;120(23):3627-34. [Crossref] [PubMed] [PMC]
- Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules With Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid 2015;25(11):1217-23. [Crossref] [PubMed] [PMC]
- Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules With Indeterminate Cytology: A Prospective Blinded Multicenter Study. JAMA Oncol. 2019;5(2):204-212. [Crossref] [PubMed] [PMC]
- Desai M, Lepe M, Baloch ZW, Mandel SJ. ThyroSeq V3 for Bethesda III and IV: An Institutional Experience. Cancer Cytopathol. 2021;129(2):164-170. [Crossref] [PubMed]
- Chen T, Gilfix BM, Rivera J, Sadeghi N, Richardson K, Heir M, et al. The Role of the ThyroSeq V3 Molecular Test in the Surgical Management of Thyroid Nodules in the Canadian Public Health Care Setting. Thyroid 2020;30(9):1280-7. Epub 2020 May 5. [Crossref] [PubMed]
- Jug R, Foo WC, Jones C, Ahmadi S, Jiang XS. High-Risk and Intermediate-High-Risk Results From the ThyroSeq V2 and V3 Thyroid Genomic Classifier are Associated With Neoplasia: Independent Performance Assessment at an Academic Institution. Cancer Cytopathol 2020;128(8):563-9. [Crossref] [PubMed]
- Nikiforova MN, Mercurio S, Wald AI, Barbi deMoura M, Callenberg K, Santana-Santos L, et al. Analytical Performance of the ThyroSeq V3 Genomic Classifier for Cancer Diagnosis in Thyroid Nodules. Cancer 2018;124(8):1682-90. [Crossref] [PubMed] [PMC]
- David SL, Sally EC, Rebecca SS. Clinical Validation of ThyroSeq V3® Performance in Thyroid Nodules With Indeterminate Cytology: A Prospective Blinded Multi-Institutional Validation Study, in: Presented at the 87th Annual American Thyroid Association Meeting. 2017:p7-40. [Link]
- Labourier E, Shifrin A, Busseniers AE, Lupo MA, Manganelli ML, Andruss B, et al. Molecular Testing for miRNA, mRNA, and DNA on Fine-Needle Aspiration Improves the Preoperative Diagnosis of Thyroid Nodules With Indeterminate Cytology. J Clin Endocrinol Metab. 2015;100(7):2743-50. [Crossref] [PubMed] [PMC]
- Sistrunk JW, Shifrin A, Frager M, Bardales RH, Thomas J, Fishman N, et al. Clinical Performance of Multiplatform Mutation Panel and microRNA Risk Classifier in Indeterminate Thyroid Nodules. J Am Soc Cytopathol. 2020;9(4):232-41. [Crossref] [PMC]
- Jackson S, Kumar G, Banizs AB, Toney N, Silverman JF, Narick CM, et al. Incremental utility of expanded mutation panel when used in combination with microRNA classification in indeterminate thyroid nodules. Diagn Cytopathol. 2020;48:43-52. [Crossref] [PubMed] [PMC]
- Vargas-Salas S, Martinez JR, Urra S, Dominguez JM, Mena N, Uslar T, et al. Genetic testing for indeterminate thyroid cytology: Review and meta-analysis. Endocrine-related Cancer 2018;25:163-77. [Crossref] [PubMed] [PMC]
- Livhits MJ, Zhu CY, Kuo EJ, Nguyen DT, Kim J, Tseng CH, et al. Effectiveness of molecular testing techniques for diagnosis of indeterminate thyroid nodules: A randomized clinical trial. JAMA Oncol. 2021;7:70-7. [Crossref] [PubMed] [PMC]
- Webster TJ. Nanomedicine: What's in a definition? Int J Nanomed. 2006;1:115-6. [Crossref] [PubMed] [PMC]
- Luo L, He, Y. Magnetically driven microfluidics for isolation of circulating tumor cells. Cancer Med. 2020;9:4207-31. [Crossref] [PubMed] [PMC]
- Liu Y, Gunda V, Zhu X, Xu X, Wu J, Askhatova D, et al. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proc Natl Acad Sci USA 2016;113:7750-5. [Crossref] [PubMed] [PMC]
- Guiot J, Vaidyanathan A, Deprez L, Zerka F, Danthine D, Frix AN, et al. A review in radiomics: Making personalized medicine a reality via routine imaging. Med Res Rev. 2022;42:426-40. [Crossref] [PubMed]
- Sorrenti S, Dolcetti V, Radzina M, Bellini MI, Frezza F, Munir K., et al. Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing? Cancers 2022;14:3357. [Crossref] [PubMed] [PMC]