The Role of Nuclear Medicine in Clinical Molecular Imaging of Inflammation

biyomedikalozel5-1-24kapak

Yeşim CEYLANa , Zehra ÖZCANb
aUşak University Faculty of Medicine, Department of Nuclear Medicine, Uşak, Türkiye
bEge University Faculty of Medicine, Department of Nuclear Medicine, İzmir, Türkiye

Ceylan Y, Özcan Z. The role of nuclear medicine in clinical molecular imaging of inflammation. In: Koçdor H, Pabuççuoğlu A, Zihnioğlu F, eds. Inflammation and in vitro Diagnostics. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.44-9.

Article Language: EN

ABSTRACT
Current developments in biotechnology and widespread use of imaging modalities significantly improved diagnosis and management of inflammatory conditions. Nuclear Medicine (NM) and molecular imaging (MI), owing to their nature as physiologic based methods have a great potential to detect inflammation related alterations early in the beginning before the morphologic changes occur. Therefore, molecular NM modalities lead to positive findings at an earlier period than the radiologic methods based on the morphologic tissue changes. Two main modalities in NM, SPECT (single photon emission tomography) and PET (positron emission tomography) can be used for in vivo identification of inflammation with different radiopharmaceuticals. Molecular imaging is generated through a variety of radiopharmaceutical agents targeting different cellular subtypes in the dynamic course of inflammation. Radiolabeled leucocytes, 18F FDG reflecting increased glucose metabolism, radiolabeled chemokine receptors and fibroblast activating proteins already have been molecular tracers in clinical practice. Currently hybrid imaging such as SPECT/CT and PET/CT providing anatomic and functional information together improved diagnostic accuracy and enhanced the value of NM and molecular imaging in inflammation.

Keywords: Inflammation; diagnostic imaging; radionuclide imaging; scintigraphy

Referanslar

  1. Boerman O, Dams E, Oyen W, Corstens FH, Storm G. Radiopharmaceuticals for scintigraphic imaging of infection and inflammation. Inflamm. Res. 2001; 50(2):55-64. [Crossref]  [PubMed]
  2. Signore A, Glaudemans AW. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med. 2011;25(10):681-700. [Crossref]  [PubMed]
  3. Palestro CJ. Molecular Imaging of Infection: The First 50 Years. Semin Nucl Med. 2020;50(1):23-34. [Crossref]  [PubMed]
  4. Ertay T. Enfeksiyon-Enflamasyon: Moleküler Görüntülemede Kullanılan SPECT Radyofarmasötikleri. Nuclear Medicine Seminars/Nükleer Tıp Seminerleri. 2016;2:63-70. [Crossref]
  5. McAfee JG, Thakur ML. Survey of radioactive agents for in vitro labeling of phagocytic leukocytes. I. Soluble agents. J Nucl Med. 1976;17:480-7.
  6. McAfee JG, Thakur ML. Survey of radioactive agents for in vitro labeling of phagocytic leukocytes. II. Particles. J Nucl Med. 1976;17:488-92.
  7. Thakur ML, Lavender JP, Arnot RN, et al. Indium-111-labeled autologous leukocytes in man. J Nucl Med. 1977;18:1014-21.
  8. Signore A, Jamar F, Israel O, Buscombe J, Martin-Comin J, Lazzeri E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline. Eur J Nucl Med Mol Imaging. 2018;45(10):1816-31. [Crossref]  [PubMed]  [PMC]
  9. Palestro CJ, Love C, Bhargava K K. Labeled leukocyte imaging: current status and future directions. Q JNucl Med Imaging. 2009;53(1):105-23.
  10. Lauri C, Signore A, Glaudemans AWJM, Treglia G, Gheysens O, Slart RHJA, et al. Evidence-based guideline of the European Association of Nuclear Medicine (EANM) on imaging infection in vascular grafts. Eur J Nucl Med Mol Imaging. 2022;49(10):3430-51. [Crossref]  [PubMed]  [PMC]
  11. Chakfé N, Diener H, Lejay A, Assadian O, Berard X, Caillon J, et al. Editor's Choice - European Society for Vascular Surgery (ESVS) 2020 Clinical Practice Guidelines on the Management of Vascular Graft and Endograft Infections. Eur J Vasc Endovasc Surg. 2020;59(3):339-84. [Crossref]  [PubMed]
  12. Signore A, Sconfienza L M, Borens O, Glaudemans AWJM, Cassar-Pullicino V, Trampuz A, et al. Consensus document for the diagnosis of prosthetic joint infections: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging. 2019;46(4):971-88. [Crossref]  [PubMed]  [PMC]
  13. Glaudemans AWJM, Jutte P C, Cataldo M A, Cassar-Pıullicino V, Gheysens O, Borens O et al. Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging. 2019;46(4):957-70. [Crossref]  [PubMed]  [PMC]
  14. Aydın F, Kın Cengiz A, Güngör F. Tc-99m Labeled HMPAO white Blood Cell Scintigraphy in Pediatric Patients. Mol Imaging Radionucl Ther. 2012; 21(1):13-8. [Crossref]  [PubMed]  [PMC]
  15. Budak E, Aydın F. Kemik ve Yumuşak Doku Enfeksiyonlarında Nükleer Tıp: SPECT ve PET ile Güncel Durum. Nucl Med Semin. 2022;8:43-58.
  16. Kaya H, Daştan AE. Ortopedist Gözüyle Nükleer Tıptan Beklentiler. Nucl Med Semin. 2022;8:8-14. [Crossref]
  17. Mikail N, Hyafil F. Nuclear Imaging in Infective Endocarditis. Pharmaceuticals (Basel). 2021;15(1):14. [Crossref]  [PubMed]  [PMC]
  18. Sengoz T, Yaylali O, Yuksel D, Demirkan F, Uluyol O. The clinical contribution of SPECT/CT with 99mTc-HMPAO-labeled leukocyte scintigraphy in hip and knee prosthetic infections. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2019;38(4):212-7. [Crossref]  [PubMed]
  19. Locher JT, Seybold K, Andres RY, Schubiger PA, Mach JP, Buchegger F. Imaging of inflammatory and infectious lesions after injection of radioiodinated monoclonal anti-granulocytes antibodies. Nucl Med Commun. 1986;7(9):659-70. [Crossref]  [PubMed]
  20. Becker W, Bair J, Behr T, Repp R, Streckenbach H, Beck H, et al. Detection of soft-tissue infections and osteomyelitis using a technetium-99m-labeled anti-granulocyte monoclonal antibody fragment. J Nucl Med. 1994; 35(9):1436-43.
  21. Lupetti A, Welling MM, Pauwels EK, Nibbering PH. Radiolabelled antimicrobial peptides for infection detection. Lancet Infect Dis. 2003;3(4):223-9. [Crossref]  [PubMed]
  22. Kiamanesh Z, Ayati N, Alavi R, Gharehdaghi M, Aryana K. Application of 99mTc-UBI 29-41 scintigraphy in knee periprosthetic infection diagnosis. Nuklearmedizin. 2019;58:301-8. [Crossref]  [PubMed]
  23. Vinjamuri S, Hall AV, Solanki KK, Bomanji J, Siraj Q, O'Shaughnessy E et al. Comparison of 99mTc infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection. Lancet. 1996;27:233-5. [Crossref]  [PubMed]
  24. Sonmezoglu K, Sonmezoglu M, Halac M, Akgün I, Türkmen C, Onsel C, et al. Usefulness of 99mTc-ciprofloxacin (infecton) scan in diagnosis of chronic orthopedic infections: comparative study with 99mTc-HMPAO leukocyte scintigraphy. J Nucl Med. 2001;42(4):567-74.
  25. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med. 2001;42(10):1551-5.
  26. Casali M, Lauri C, Altini C, Bertagna F, Cassarino G, Cistaro A et al. State of the art of 18F-FDG PET/CT application in inflammation and infection: a guide for image acquisition and interpretation. Clin Transl Imaging. 2021;9(4):299-339. [Crossref]  [PubMed]  [PMC]
  27. Treglia G. Diagnostic Performance of 18F-FDG PET/CT in Infectious and Inflammatory Diseases according to Published Meta-Analyses. Contrast Media Mol Imaging. 2019;2019:3018349. [Crossref]  [PubMed]  [PMC]
  28. Kung BT, Seraj SM, Zadeh MZ, Rojulpote C, Kothekar E, Ayubcha C, et al. An update on the role of 18F-FDG-PET/CT in major infectious and inflammatory diseases. Am J Nucl Med Mol Imaging. 2019;9(6):255-73.
  29. Slart RHJA; Writing group; Reviewer group; Members of EANM Cardiovascular; Members of EANM Infection & Inflammation; Members of Committees, SNMMI Cardiovascular; Members of Council, PET Interest Group; Members of ASNC; EANM Committee Coordinator. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur J Nucl Med Mol Imaging. 2018;45(7):1250-69. [Crossref]  [PubMed]  [PMC]
  30. Wu C, Li F, Niu G, Chen X. PET imaging of inflammation biomarkers. Theranostics. 2013;3(7):448-66. [Crossref]  [PubMed]  [PMC]
  31. Iking J, Staniszewska M, Kessler L, Klose JM, Lückerath K, Fendler WP, et al. Imaging Inflammation with Positron Emission Tomography. Biomedicines. 2021;9(2):212. [Crossref]  [PubMed]  [PMC]
  32. Bouter C, Meller B, Sahlmann CO, Staab W, Wester HJ, Kropf S, et al. (68)Ga-Pentixafor PET/CT imaging of chemokine receptor CXCR4 in chronic infection of the bone: First insights. J Nucl Med. 2018;59:320-6. [Crossref]  [PubMed]
  33. Werner RA, Koenig T, Diekmann J, Haghikia A, Derlin T, Thackeray JT, et al. CXCR4-targeted imaging of post-infarct myocardial tissue inflammation: Prognostic value after reperfused myocardial infarction. JACC Cardiovasc Imaging. 2022;15:372-4. [Crossref]  [PubMed]
  34. Tarkin JM, Calcagno C, Dweck MR, Evans NR, Chowdhury MM, Gopalan D, et al. 68Ga-DOTATATE PET Identifies Residual Myocardial Inflammation and Bone Marrow Activation After Myocardial Infarction. J. Am. Coll. Cardiol. 2019;73:2489-91. [Crossref]  [PubMed]  [PMC]
  35. Nobashi T, Nakamoto Y, Kubo T, Ishimori T, Handa T, Tanizawa K, et al. The utility of PET/CT with 68Ga-DOTATOC in sarcoidosis: Comparison with 67Ga-scintigraphy. Ann. Nucl. Med. 2016;30:544-52. [Crossref]  [PubMed]
  36. Kessler L, Kupusovic J, Ferdinandus J, Hirmas N, Umutlu L, Zarrad F, et al. Visualization of fibroblast activation after myocardial infarction using 68Ga-FAPI PET. Clin Nucl Med. 2021;46:807-13. [Crossref]  [PubMed]
  37. Li M, Younis M, Zhang Y, Cai W, Lan X. Clinical summary of fibroblast activation protein inhibitor based radiopharmaceuticals: cancer and beyond. Eur J Nucl Med Mol Imaging. 2022;49(8):2844-68. [Crossref]  [PubMed]  [PMC]