THE ROLE OF NUCLEAR MEDICINEIN THE DIAGNOSIS OF GASTROENTEROPANCREATIC NEUROENDOCRINE TUMORS: NEW APPROACHES
Huri Tilla İlçe
Sakarya University, Faculty of Medicine, Department of Nuclear Medicine, Sakarya, Türkiye
İlçe HT. The Role of Nuclear Medicine in the Diagnosis of Gastroenteropancreatic Neuroendocrine Tumors: New Approaches. In: Gönüllü E, Karaman K, editors. Modern Approaches and Recent Advances in Neuroendocrine Tumors. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.85-94.
ABSTRACT
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare neoplasms that originate from enterochromaffin cells. They secrete hormones and tumor-specific markers and can develop anywhere in the gastrointestinal tract. Nuclear Medicine plays a crucial role in both the diagnosis and treatment of GEP-NETs. GEP-NETs express somatostatin receptors (SRs), which serve as the foundation for somatostatin receptor scintigraphy (SRS) and, more recently, somatostatin receptor positron emission tomography (PET). Nuclear Medicine imaging modalities plays a central role in the diagnostic evaluation of patients with well-differentiated GEP-NETs. SRS and peptide receptor radionuclide therapy (PRRT) are among the most widely used and effective theranostic approaches for GEP-NETs. The advantage of SRS over other imaging techniques is its ability to identify patients with adequate receptor uptake, making them eligible for treatment with radiolabeled somatostatin analogs. This review aims to provide a comprehensive overview of the current applications of Nuclear Medicine Techniques in GEP-NETs.
Keywords: Gastroenteropancreatic neuroendocrine tumors; PET/CT, 68Ga-DOTA TATE; 18F-FDG
Kaynak Göster
Referanslar
- Deroose CM, Hindié E, Kebebew E, Goichot B, Pacak K, Taïeb D, et al. Molecular Imaging of Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future Directions. J Nucl Med. 2016;57(12):1949-1956. [Crossref] [PubMed] [PMC]
- Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia. 2017;19(12):991-1002. [Crossref] [PubMed] [PMC]
- Loosen SH, Kostev K, Jann H, Tetzlaff F, Tacke F, Krieg S, et al. Distribution of gastrointestinal neuroendocrine tumors in Europe: results from a retrospective cross-sectional study. J Cancer Res Clin Oncol. 2023;149(4):1411-1416. [Crossref] [PubMed] [PMC]
- Taal BG, Visser O. Epidemiology of neuroendocrine tumours. Neuroendocrinology. 2004;80 Suppl 1:3-7. [Crossref] [PubMed]
- Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and stag ing systems. Pancreas. 2010;39(6):707-12. [Crossref] [PubMed]
- Klöppel G. Neuroendocrine Neoplasms: Dichotomy, Origin and Classifications. Visc Med. 2017;33(5):324-330. [Crossref] [PubMed] [PMC]
- Rindi G, Mete O, Uccella S, Basturk O, La Rosa S, Brosens LAA, et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr Pathol. 2022;33(1):115-154. [Crossref] [PubMed]
- Cree IA, Tan PH, Travis WD, Wesseling P, Yagi Y, White VA, et al. Counting mitoses: SI(ze) matters! Mod Pathol. 2021;34(9):1651-1657.7. [Crossref] [PubMed] [PMC]
- Pobłocki J, Jasińska A, Syrenicz A, Andrysiak-Mamos E, Szczuko M. The Neuroendocrine Neoplasms of the Digestive Tract: Diagnosis, Treatment and Nutrition. Nutrients. 2020;12(5):1437. [Crossref] [PubMed] [PMC]
- Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35(2):500-16. [Crossref] [PubMed]
- Johnbeck CB, Knigge U, Kjær A. PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. Future Oncol. 2014;10(14):2259-77. [Crossref] [PubMed]
- Hope TA, Bergsland EK, Bozkurt MF, Graham M, Heaney AP, Herrmann K, et al. Appropriate Use Criteria for Somatostatin Receptor PET Imaging in Neuroendocrine Tumors. J Nucl Med. 2018;59(1):66-74. [Crossref] [PubMed] [PMC]
- Georgakopoulos A. Current role of Nuclear Medicine in the diagnosis and therapy of gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Hell J Nucl Med. 2023;26 Suppl:49-51. [PubMed]
- NCCN guidelines: Neuroendocrine and Adrenal tumors. Version4.2024-January 17, 2025.
- Toumpanakis C, Kim MK, Rinke A, Bergestuen DS, Thirlwell C, Khan MS, et al. Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 2014;99(2):63-74. [Crossref] [PubMed]
- Rindi G, Capella C, Solcia E. Cell biology, clinicopathological profile, and classification of gastroenteropancreatic endocrine tumors. J Mol Med (Berl). 1998;76(6):413-20. [Crossref] [PubMed]
- Papotti M, Bongiovanni M, Volante M, Allìa E, Landolfi S, Helboe L, et al. Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. 2002;440(5):461-75. [Crossref] [PubMed]
- Krenning EP, Bakker WH, Breeman WA, Koper JW, Kooij PP, Ausema L, et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet. 1989;1(8632):242-4.0. [Crossref] [PubMed]
- Pavel M, Baudin E, Couvelard A, Krenning E, Öberg K, Steinmüller T, et al. Barcelona Consensus Conference participants. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157-76. [Crossref] [PubMed]
- Kwekkeboom DJ, Kooij PP, Bakker WH, Mäcke HR, Krenning EP. Comparison of 111In-DOTA-Tyr3octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumor uptake. J Nucl Med. 1999;40(5):762-7. [PubMed]
- Krenning EP, Bakker WH, Kooij PP, Breeman WA, Oei HY, de Jong M, et al. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med. 1992;33(5):652-8. [PubMed]
- Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20(8):716-31. [Crossref] [PubMed]
- Hubalewska-Dydejczyk A, Fröss-Baron K, Mikołajczak R, Maecke HR, Huszno B, Pach D, et al. 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years' experience. Eur J Nucl Med Mol Imaging. 2006;33(10):112333 [Crossref] [PubMed]
- Guo W, Hinkle GH, Lee RJ. 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med. 1999;40(9):1563-9. [PubMed]
- Toumpanakis C, Kim MK, Rinke A, Bergestuen DS, Thirlwell C, Khan MS, et al. Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 2014;99(2):63-74. [Crossref] [PubMed]
- Lewis JS, Srinivasan A, Schmidt MA, Anderson CJ. In vitro and in vivo evaluation of 64Cu-TETATyr3-octreotate. A new somatostatin analog with improved target tissue uptake. Nucl Med Biol. 1999;26(3):267-73. [Crossref] [PubMed]
- Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273-82. [Crossref] [PubMed]
- Sadowski SM, Neychev V, Millo C, Shih J, Nilubol N, Herscovitch P, et al. Prospective Study of 68GaDOTATATE Positron Emission Tomography/Computed Tomography for Detecting Gastro-EnteroPancreatic Neuroendo crine Tumors and Unknown Primary Sites. J Clin Oncol. 2016;34(6):588-96. [Crossref] [PubMed] [PMC]
- Treglia G, Castaldi P, Rindi G, Giordano A, Rufini V. Diagnostic performance of Gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroendocrine tumours: a meta-analysis. Endocrine. 2012;42(1):80-7. [Crossref] [PubMed]
- Haug AR, Cindea-Drimus R, Auernhammer CJ, Reincke M, Beuschlein F, Wängler B, et al. Neuroendocrine tumor recurrence: diagnosis with 68Ga-DOTATATE PET/CT. Radiology. 2014;270(2):517-25. [Crossref] [PubMed]
- Singh S, Poon R, Wong R, Metser U. 68Ga PET Imaging in Patients With Neuroendocrine Tumors: A Systematic Review and Meta-analysis. Clin Nucl Med. 2018;43(11):802-810. [Crossref] [PubMed]
- Belhocine T, Foidart J, Rigo P, Najjar F, Thiry A, Quatresooz P, et al. Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumours: correlations with the pathological indexes p53 and Ki-67. Nucl Med Commun. 2002;23(8):727-34. [Crossref] [PubMed]
- Panagiotidis E, Alshammari A, Michopoulou S, Skoura E, Naik K, Maragkoudakis E, et al. Comparison of the Impact of 68Ga-DOTATATE and 18F-FDG PET/CT on Clinical Management in Patients with Neuroendocrine Tumors. J Nucl Med. 2017;58(1):91-96.27516446. [Crossref] [PubMed]
- Zhang P, Yu J, Li J, Shen L, Li N, Zhu H, et al. Clinical and Prognostic Value of PET/CT Imaging with Combination of 68Ga-DOTATATE and 18F-FDG in Gastroenteropancreatic Neuroendocrine Neoplasms. Contrast Media Mol Imaging. 2018;2018:2340389. [Crossref] [PubMed] [PMC]
- Berzaczy D, Giraudo C, Haug AR, Raderer M, Senn D, Karanikas G, et al. Whole-Body 68GaDOTANOC PET/ MRI Versus 68Ga-DOTANOC PET/CT in Patients With Neuroendocrine Tumors: A Prospective Study in 28 Patients. Clin Nucl Med. 2017;42(9):669-674. [Crossref] [PubMed] [PMC]
- Loft M, Carlsen EA, Johnbeck CB, Johannesen HH, Binderup T, Pfeifer A, et al. 64Cu-DOTATATE PET in Patients with Neuroendocrine Neoplasms: Prospective, Head-to-Head Comparison of Imaging at 1 Hour and 3 Hours After Injection. J Nucl Med. 2021;62(1):73-80. [Crossref] [PubMed]
- Johnbeck CB, Knigge U, Loft A, Berthelsen AK, Mortensen J, Oturai P, et al. A. Head-to-Head Comparison of 64Cu-DO TATATE and 68Ga-DOTATOC PET/CT: A Prospective Study of 59 Patients with Neuroendocrine Tumors. J Nucl Med. 2017;58(3):451-457. [Crossref] [PubMed]
- Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ, Vanghillewe K, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxytryptophan positron emission tomography. J Clin Oncol. 2008;26(9):1489-95. [Crossref] [PubMed]
- Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, et al. Comparison between 68Ga-DOTANOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35(8):1431-8. [Crossref] [PubMed]
- Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35(2):500-16. [Crossref] [PubMed]
- Baumann T, Rottenburger C, Nicolas G, Wild D. Gastroenteropancreatic neuroendocrine tumours (GEP-NET) Imaging and staging. Best Pract Res Clin Endocrinol Metab. 2016;30(1):45-57. [Crossref] [PubMed]
- Haug A, Auernhammer CJ, Wängler B, Tiling R, Schmidt G, Göke B, et al. Intraindividual comparison of 68Ga-DOTATATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36(5):765-70. [Crossref] [PubMed]
- Leroy-Freschini B, Amodru V, Addeo P, Sebag F, Vix M, Brunaud L, et al. Early 18F-FDOPA PET/CT imaging after carbidopa premedication as a valuable diagnostic option in patients with insulinoma. Eur J Nucl Med Mol Imaging. 2019;46(3):686-695. [Crossref] [PubMed]
- Helali M, Addeo P, Heimburger C, Detour J, Goichot B, Bachellier P, et al. Carbidopa-assisted 18Ffluorodihydroxyphenylalanine PET/CT for the localization and staging of non-functioning neuroendocrine pancreatic tumors. Ann Nucl Med. 2016;30(9):659-668. [Crossref] [PubMed]
- Minn H, Kauhanen S, Seppänen M, Nuutila P. 18F-FDOPA: a multiple-target molecule. J Nucl Med. 2009;50(12):1915-8. [Crossref] [PubMed]
- Velikyan I, Eriksson O. Advances in GLP-1 receptor targeting radiolabeled agent development and prospective of theranostics. Theranostics. 2020;10(1):437-461. [Crossref] [PubMed] [PMC]
- Luo Y, Pan Q, Yao S, Yu M, Wu W, Xue H, et al. Gluca gon-Like Peptide-1 Receptor PET/CT with 68Ga-NOTA-Exendin-4 for Detecting Localized Insulinoma: A Prospective Cohort Study. J Nucl Med. 2016;57(5):715-20. [Crossref] [PubMed] [PMC]
- Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. NETTER-1 Trial Investigators. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017;376(2):125-135. [Crossref] [PubMed] [PMC]
- Singh S, Halperin D, Myrehaug S, et al. [177Lu]Lu-DOTA-TATE plus long-acting octreotide versus high-dose long-acting octreotide for the treatment of newly diagnosed, advanced grade 2-3, well-differentiated, gastroenteropancreatic neuroendocrine tumours (NETTER-2): an open-label, randomised, phase 3 study. Lancet. 2024;403(10446):2807-2817. [Crossref] [PubMed]