The Role of Radiopharmaceuticals in Imaging and Therapy of Neuroendocrine Tumors

Merve KARPUZ a , A. Yekta ÖZER b

aIzmir Kâtip Celebi University Faculty of Pharmacy, Department of Radiopharmacy, Izmir, TURKEY
bHacettepe University Faculty of Pharmacy, Department of Radiopharmacy, Ankara, TURKEY

ABSTRACT
Neuroendocrine tumors (NET) are heterogeneous tumor groups originated from endocrine tissues. The specific receptor expressions of NETs allow the use of targeted radiopharmaceuticals for imaging and/or therapy. Radiolabeled peptide analogs of receptors overexpressing on cancer cells and radiolabeled amine precursors in NET metabolism can be used as radiopharmaceuticals. Somatostatin receptors (SSTR) play a critical role in not only imaging but also radionuclide treatment of NET. Although OctreoScan®, the first peptide imaging agent, was approved for NET imaging, 68Ga-peptide analogs showed higher sensitivity. The radiolabeling of SSTR analogs with β- emitter radioisotopes such as 111In, 90Y, 177Lu and 131I makes them possible for the therapeutic approach. Besides the SSTR, the targeted radiopharmaceuticals to glucagon-like peptide-1 receptor and cholecystokinin-2 receptor were developed for benign insulinomas and medullary thyroid cancer, respectively. The aim of this chapter is to review the current approaches for the diagnosis and treatment of NET by giving information regarding receptor or metabolic pathway targeted radiopharmaceuticals.
Keywords: Neuroendocrine tumor; radiopharmaceutical; receptor targeting

Referanslar

  1. Oronsky b, Ma PC, Morgensztern D, Carter CA. Nothing but NET. A review of neuroendocrine tumors and carcinomas. Neoplasia. 2017;19(12):991-1002. [Crossref]  [PubMed]  [PMC]
  2. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39(6):707-12. [Crossref]  [PubMed]
  3. Fani M. Current and future radiopharmaceuticals in neuroendocrine tumor imaging. In: Pacak K, Taïeb D, eds. Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Cham: Springer International Publishing; 2017. p.141-62. [Crossref]
  4. Chin RI, Wu FS, Menda Y, Kim H. Radiopharmaceuticals for neuroendocrine tumors. Seminars in Radiation oncology. 2021; 31(1):60-70. [Crossref]  [PubMed]
  5. Mills SE. Neuroectodermal neoplasms of the head and neck with emphasis on neuroendocrine carcinomas. Mod Pathol. 2002;15(3):264-78. [Crossref]  [PubMed]
  6. Pavel M, baudin E, Couvelard A, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157- 76. [Crossref]  [PubMed]
  7. Reubi JC, Schar JC, Waser b, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273- 82. [Crossref]  [PubMed]
  8. Forrer F, Uusijarvi H, Waldherr C, et al. A comparison of 111in-DoTAToC and 111InDoTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31(9):1257-62. [Crossref]  [PubMed]
  9. Cwikla Jb, Mikolajczak R, Pawlak D, et al. Initial direct comparison of 99mTc-ToC and 99mTc-TATE in identifying sites of disease in patients with proven GEP NETs. J Nucl Med. 2008;49(7):1060-65. [Crossref]  [PubMed]
  10. Menda Y, Kahn D. Somatostatin receptor imaging of non-small cell lung cancer with 99mTc depreotide. Semin Nucl Med. 2002; 32(2):92-6. [Crossref]  [PubMed]
  11. Velikyan I. Prospective of (6) (8)Ga-radiopharmaceutical development. Theranostics. 2013;4(1):47-80. [Crossref]  [PubMed]  [PMC]
  12. Sandstrom M, Velikyan I, Garske-Roman U, et al. Comparative biodistribution and radiation dosimetry of 68Ga-DoTAToC and 68GaDoTATATE in patients with neuroendocrine tumors. J Nucl Med. 2013;54(10):1755-59. [Crossref]  [PubMed]
  13. Wild D, Schmitt JS, Ginj M, et al. DoTA-NoC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging. 2003;30(10):1338-47. [Crossref]  [PubMed]
  14. Wild D, bomanji Jb, benkert P, et al. Comparison of 68Ga-DoTANoC and 68GaDoTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013;54(3):364-72. [Crossref]  [PubMed]
  15. Ambrosini V, Fani M, Fanti S, Forrer F, Maecke HR. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52 Suppl 2:42S-55S. [Crossref]  [PubMed]
  16. Pfeifer A, Knigge U, binderup T, et al. 64CuDoTATATE PET for neuroendocrine tumors: a prospective head-to-head comparison with 111In-DTPA-octreotide in 112 patients. J Nucl Med. 2015;56(6):847-54. [Crossref]  [PubMed]
  17. Pfeifer A, Knigge U, Mortensen J, et al. Clinical PET of neuroendocrine tumors using 64Cu-DoTATATE: first-in-humans study. J Nucl Med. 2012;53(8):1207-15. [Crossref]  [PubMed]
  18. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr Pharm Des. 2007;13(1):3-16. [Crossref]  [PubMed]
  19. Barone R, Walrand S, Konijnenberg M, et al. Therapy using labelled somatostatin analogues: comparison of the absorbed doses with 111in-DTPA-D-Phe1-octreotide and yttrium-labelled DoTA-D-Phe1-Tyr3-octreotide. Nucl Med Commun. 2008; 29(3):283-90. [Crossref]  [PubMed]
  20. Imhof A, brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DoTA]-ToC in metastasized neuroendocrine cancers. J Clin oncol. 2011;29(17):2416-23. [Crossref]  [PubMed]
  21. Bushnell DL Jr, o'Dorisio TM, o'Dorisio MS, et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin oncol. 2010;28(10):1652-59. [Crossref]  [PubMed]  [PMC]
  22. Devcic Z, Rosenberg J, braat AJ, et al. The efficacy of hepatic 90Y resin radioembolization for metastatic neuroendocrine tumors: a meta-analysis. J Nucl Med. 2014;55(9):1404- 10. [Crossref]  [PubMed]
  23. Zuckerman DA, Kennard RF, Roy A, Parikh PJ, Weiner AA. outcomes and toxicity following Yttrium-90 radioembolization for hepatic metastases from neuroendocrine tumors-a single-institution experience. J Gastrointest oncol. 2019;10(1):118-27. [Crossref]  [PubMed]  [PMC]
  24. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125-35. [Crossref]  [PubMed]  [PMC]
  25. Authorization details for Lutathera in Europe. [Cited: 16.02.2021]. [Link]
  26. FDA letter of approval for Lutathera. [Cited: 16.02.2021]. [Link]
  27. Pryma DA, Chin bb, Noto Rb, et al. Efficacy and safety of high-specific-activity 131I-MIbG therapy in Patients with advanced pheochromocytoma or paraganglioma. J Nucl Med. 2019;60(5):623-30. [Crossref]  [PubMed]  [PMC]
  28. FDA approval for iobenguane I-131 (AZEDRA), 2017. [Cited: 17.02.2021]. [Link]
  29. Wafelman AR, Hoefnagel CA, Maes RAA, beijnen JH. Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interactions, cytotoxicity and dosimetry. European Journal of Nuclear Medicine.1994;21(6):545-59. [Crossref]  [PubMed]
  30. Toumpanakis C, Kim MK, Rinke A, et al. Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 2014;99(2):63-74. [Crossref]  [PubMed]
  31. Prasad V, Ambrosini V, Alavi A, Fanti S, baum RP. PET/CT in neuroendocrine tumors: evaluation of receptor status and metabolism. PET Clin. 2007;2(3):351-75. [Crossref]  [PubMed]
  32. Naswa N, Sharma P, Gupta SK, et al. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68GaDoTA-NoC PET-CT and 18F-FDG PET-CT: competitive or complimentary? Clin Nucl Med. 2014;39(1):27-34. [Crossref]  [PubMed]
  33. Putzer D, Gabriel M, Kendler D, et al. Comparison of (68)Ga-DoTA-Tyr(3)-octreotide and (18)F-fluoro-L-dihydroxyphenylalanine positron emission tomography in neuroendocrine tumor patients. Q J Nucl Med Mol Imaging. 2010;54(1):68-75.
  34. Yang J, Hao R, Zhu x. Diagnostic role of 18Fdihydroxyphenylalanine positron emission tomography in patients with congenital hyperinsulinism: a meta-analysis. Nucl Med Commun. 2013;34(4):347-53. [Crossref]  [PubMed]
  35. Koopmans KP, Neels oC, Kema IP, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenylalanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin oncol. 2008;26(9):1489-95. [Crossref]  [PubMed]
  36. Orlefors H, Sundin A, Garske U, et al. Wholebody (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab. 2005;90(6):3392-400. [Crossref]  [PubMed]
  37. Reubi JC, Waser b. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2003;30(5):781-93. [Crossref]  [PubMed]
  38. Zimmer T, Stolzel U, bader M, et al. Endoscopic ultrasonography and somatostatin receptor scintigraphy in the preoperative localisation of insulinomas and gastrinomas. Gut. 1996;39(4):562-8. [Crossref]  [PubMed]  [PMC]
  39. Kauhanen S, Seppanen M, Minn H, et al. Fluorine-18-L-dihydroxyphenylalanine (18FDoPA) positron emission tomography as a tool to localize an insulinoma or beta-cell hyperplasia in adult patients. J Clin Endocrinol Metab. 2007;92(4):1237-44. [Crossref]  [PubMed]
  40. Tessonnier L, Sebag F, Ghander C, et al. Limited value of 18F-F-DoPA PET to localize pancreatic insulin-secreting tumors in adults with hyperinsulinemic hypoglycemia. J Clin Endocrinol Metab. 2010;95(1):303-7. [Crossref]  [PubMed]
  41. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J biol Chem. 1992;267(11):7402-5. [Crossref]  [PubMed]
  42. Wild D, Macke H, Christ E, Gloor b, Reubi JC. Glucagon-like peptide 1-receptor scans to localize occult insulinomas. N Engl J Med. 2008;359(7):766-8. [Crossref]  [PubMed]
  43. Christ E, Wild D, Ederer S, et al. Glucagonlike peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol. 2013;1(2):115-22. [Crossref]  [PubMed]
  44. Sowa-Staszczak A, Trofimiuk-Muldner M, Stefanska A, et al. 99mTc Labeled glucagon-like peptide-1-analogue (99mTc-GLP1) scintigraphy in the management of patients with occult insulinoma. PLoS one. 2016;11(8):e0160714. [Crossref]  [PubMed]  [PMC]
  45. Antwi K, Fani M, Heye T, et al. Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulinomas: evaluation of diagnostic accuracy in a prospective crossover imaging study. Eur J Nucl Med Mol Imaging. 2018;45(13):2318-27. [Crossref]  [PubMed]
  46. Reubi JC, Schaer JC, Waser b. Cholecystokinin (CCK)-A and CCK-b/gastrin receptors in human tumors. Cancer Res. 1997;57(7):1377-86.
  47. behe M, becker W, Gotthardt M, Angerstein C, behr TM. Improved kinetic stability of DTPA- dGlu as compared with conventional monofunctional DTPA in chelating indium and yttrium: preclinical and initial clinical evaluation of radiometal labelled minigastrin derivatives. Eur J Nucl Med Mol Imaging. 2003;30(8):1140-46. [Crossref]  [PubMed]
  48. Froberg AC, de Jong M, Nock bA, et al. Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2009;36(8):1265-72. [Crossref]  [PubMed]  [PMC]
  49. Konijnenberg MW, breeman WA, de blois E, et al. Therapeutic application of CCK2R-targeting PP-F11: influence of particle range, activity and peptide amount. EJNMMI Res. 2014;4(1):47. [Crossref]  [PubMed]  [PMC]
  50. Roosenburg S, Laverman P, Joosten L, et al. PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DoTA, NoTA, and NoDAGA and labeled with 64Cu, 68Ga, and 111In. Mol Pharm. 2014;11(11):3930-37. [Crossref]  [PubMed]