THE ROLE OF RETINAL PIGMENT EPITHELIUM (RPE) IN DRY AGE-RELATED MACULAR DEGENERATION
Esra Bahadır Camgöz
Evliya Çelebi Training and Research Hospital, Department of Ophthalmology, Kütahya, Türkiye
Bahadır Camgöz E. The Role of Retinal Pigment Epithelium (Rpe) in Dry Age-Related Macular Degeneration. In: Çıtırık M, Şekeryapan Gediz B, editors. Age-Related Macular Degeneration: Current Investigations and Treatments. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.133-142.
ABSTRACT
AAge-related macular degeneration (AMD) is one of the important diseases that can cause irreversible vision loss in the elderly population all over the world. There are two forms of this disease, dry type and wet type, the first is associated with damage to the retinal pigment epithelium (RPE), cell death and geographical atrophy in the advanced stages, it is more common in society than the wet type. Although there are treatment approaches with proven efficacy in wet AMD, there is no such treatment in the management of dry AMD yet. Consequently, the function of RPE, which is recognized as a pivotal element in the formation of dry type AMD, has emerged as a prominent research focus worldwide, driving advancements in treatment strategies. The RPE is a retinal layer necessary for retinal homeostasis and the maintenance of photoreceptor function. Researches has demonstrated that RPE damage in dry AMD may be mediated by a multitude of mechanisms. These mechanisms include the complementary system, cell death mechanisms (apoptosis, necroptosis, pyroptosis and ferroptosis), autophagy, aB crystalline expression (small heat shock protein) and mitochondrial dysfunction. Understanding the mechanisms of RPE damage in dry AMD may promise therapeutic approaches in this difficult-to-treat disease.
Keywords: Dry aged-related macular degeneration; Retina pigment epithelium; Cell death; Complement system; Autophagy; Mitochondrial dysfunction
Kaynak Göster
Referanslar
- Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health.2014;2(2):e106-e116. [Crossref] [PubMed]
- Thomas CJ, Mirza RG, Gill MK. Age-Related Macular Degeneration. Med Clin North Am. 2021;105(3):473-491. [Crossref] [PubMed]
- Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120(4):844-851. [Crossref] [PubMed] [PMC]
- Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med. 2012;33(4):295-317. [Crossref] [PubMed] [PMC]
- Ardeljan D, Chan CC. Aging is not a disease: Distinguishing age-related macular degeneration from aging. Prog Retin Eye Res. 2013;37:68-89. [Crossref] [PubMed] [PMC]
- Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin Exp Ophthalmol. 2020;48(8):1043-1056. [Crossref] [PubMed] [PMC]
- Zhang JH, Xu M. DNA fragmentation in apoptosis. Cell Res. 2000;10(3):205-211. [Crossref] [PubMed]
- Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277- 288. [Crossref] [PubMed]
- Elmore S. Apoptosis: a review of programmedcell death. Toxicol Pathol. 2007;35(4):495-516. [Crossref] [PubMed] [PMC]
- Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science.2009;325(5938):332-336. [Crossref] [PubMed]
- Weinlich R, Oberst A, Beere HM, Green DR. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 2017;18(2):127-136. [Crossref] [PubMed]
- Wang YY, Liu XL, Zhao R. Induction of Pyroptosis and Its Implications in Cancer Management. Front Oncol. 2019;9:971. Published 2019 Sep 26. [Crossref] [PubMed] [PMC]
- Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61-75. [Crossref] [PubMed] [PMC]
- Hadian K, Stockwell BR. SnapShot: Ferroptosis. Cell. 2020;181(5):1188-1188.e1. [Crossref] [PubMed] [PMC]
- Wooff Y, Fernando N, Wong JHC, Dietrich C, Aggio-Bruce R, Chu-Tan JA, et al. Caspase-1-dependent inflammasomes mediate photoreceptor cell death in photo-oxidative damage-induced retinal degeneration. [published correction appears in Sci Rep. 2024 Sep 16;14(1):21585. Sci Rep. 2020;10(1):2263. Published 2020 Feb 10. [Crossref] [PubMed] [PMC]
- Yang M, So KF, Lam WC, Lo ACY. Novel Programmed Cell Death as Therapeutic Targets in Age-Related Macular Degeneration? Int J Mol Sci. 2020;21(19):7279. Published 2020 Oct 1. [Crossref] [PubMed] [PMC]
- Gao J, Cui JZ, To E, Cao S, Matsubara JA. Evidence for the activation of pyroptotic and apoptotic pathways in RPE cells associated with NLRP3 inflammasome in the rodent eye. J Neuroinflammation. 2018;15(1):15. Published 2018 Jan 12. [Crossref] [PubMed] [PMC]
- Tong Y, Wang S. Not All Stressors Are Equal: Mechanism of Stressors on RPE Cell Degeneration. Front Cell Dev Biol. 2020;8:591067. Published 2020 Nov 19. [Crossref] [PubMed] [PMC]
- Sharma A, Sharma R, Chaudhary P, Vatsyayan R, Pearce V, Jeyabal PV, et al. 4-Hydroxynonenal induces p53-mediated apoptosis in retinal pigment epithelial cells. Arch Biochem Biophys. 2008;480(2):85-94. [Crossref] [PubMed] [PMC]
- Barak A, Morse LS, Goldkorn T. Ceramide: a potential mediator of apoptosis in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2001;42(1):247-254. [PubMed]
- Liu B, Wang W, Shah A, Yu M, Liu Y, He L, et al. Sodium iodate induces ferroptosis in human retinal pigment epithelium ARPE-19 cells. Cell Death Dis. 2021;12(3):230. Published 2021 Mar 3. [Crossref] [PubMed] [PMC]
- Tong Y, Wu Y, Ma J, Ikeda M, Ide T, Griffin CT, et al. Comparative mechanistic study of RPE cell death induced by different oxidative stresses. Redox Biol. 2023;65:102840. [Crossref] [PubMed] [PMC]
- Schneider K, Chwa M, Atilano SR, Shao Z, Park J, Karageozian H, et al. Differential effects of risuteganib and bevacizumab on AMD cybrid cells. Exp Eye Res. 2021;203:108287. [Crossref] [PubMed] [PMC]
- Boyer DS, Gonzalez VH, Kunimoto DY, Maturi RK, Roe RH, Singer MA, et al. Safety and Efficacy of Intravitreal Risuteganib for Non-Exudative AMD: A Multicenter, Phase 2a, Randomized, Clinical Trial. Ophthalmic Surg Lasers Imaging Retina. 2021;52(6):327-335. [Crossref] [PubMed]
- Xiang W, Li L, Zhao Q, Zeng Y, Shi J, Chen Z, et al. PEDF protects retinal pigment epithelium from ferroptosis and ameliorates dry AMD-like pathology in a murine model. Geroscience. 2024;46(2):2697-2714. [Crossref] [PubMed] [PMC]
- Park YG, Park YS, Kim IB. Complement System and Potential Therapeutics in Age-Related Macular Degeneration. Int J Mol Sci. 2021;22(13):6851. Published 2021 Jun 25. [Crossref] [PubMed] [PMC]
- Xu H, Chen M. Targeting the complement system for the management of retinal inflammatory and degenerative diseases. Eur J Pharmacol. 2016;787:94-104. [Crossref] [PubMed] [PMC]
- Clark SJ, Bishop PN. The eye as a complement dysregulation hotspot. Semin Immunopathol. 2018;40(1):65-74. [Crossref] [PubMed] [PMC]
- Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A. 2002;99(23):14682-14687. [Crossref] [PubMed] [PMC]
- Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res. 2010;29(2):95-112. [Crossref] [PubMed] [PMC]
- Reynolds R, Hartnett ME, Atkinson JP, Giclas PC, Rosner B, Seddon JM. Plasma complement components and activation fragments: associations with age-related macular degeneration genotypes and phenotypes. Invest Ophthalmol Vis Sci. 2009;50(12):5818-5827. [Crossref] [PubMed] [PMC]
- Gehrs KM, Jackson JR, Brown EN, Allikmets R, Hageman GS. Complement, Age-Related Macular Degeneration and a Vision of the Future. Arch Ophthalmol. 2010;128(3):349-358. [Crossref] [PubMed] [PMC]
- Heier JS, Lad EM, Holz FG, Rosenfeld PJ, Guymer RH, Boyer D, et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet. 2023;402(10411):1434-1448. [Crossref] [PubMed]
- Jaffe GJ, Westby K, Csaky KG, Monés J, Pearlman JA, Patel SS, et al. C5 Inhibitor Avacincaptad Pegol for Geographic Atrophy Due to Age-Related Macular Degeneration: A Randomized Pivotal Phase 2/3 Trial. Ophthalmology. 2021;128(4):576-586. [Crossref] [PubMed]
- Girgis S, Lee LR. Treatment of dry age-related macular degeneration: A review. Clin Exp Ophthalmol. 2023;51(8):835-852. [Crossref] [PubMed]
- Krohne TU, Stratmann NK, Kopitz J, Holz FG. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res. 2010;90(3):465-471. [Crossref] [PubMed]
- Zhang Z, Liang F, Chang J, Shan X, Yin Z, Wang L, et al. Autophagy in dry AMD: A promising therapeutic strategy for retinal pigment epithelial cell damage. Exp Eye Res. 2024;242:109889. [Crossref] [PubMed]
- Piippo N, Korhonen E, Hytti M, Kinnunen K, Kaarniranta K, Kauppinen A. Oxidative Stress is the Principal Contributor to Inflammasome Activation in Retinal Pigment Epithelium Cells with Defunct Proteasomes and Autophagy. Cell Physiol Biochem. 2018;49(1):359-367. [Crossref] [PubMed]
- Zhang TZ, Fan B, Chen X, Wang WJ, Jiao YY, Su GF, et al. Suppressing autophagy protects photoreceptor cells from light-induced injury. Biochem Biophys Res Commun. 2014;450(2):966-972. [Crossref] [PubMed]
- Zhang Q, Presswalla F, Ali RR, Zacks DN, Thompson DA, Miller JML. Pharmacologic activation of autophagy without direct mTOR inhibition as a therapeutic strategy for treating dry macular degeneration. Aging (Albany NY). 2021;13(8):10866-10890. [Crossref] [PubMed] [PMC]
- Toms M, Burgoyne T, Tracey-White D, Richardson R, Dubis AM, Webster AR, et al. Phagosomal and mitochondrial alterations in RPE may contribute to KCNJ13 retinopathy. Sci Rep. 2019;9(1):3793. Published 2019 Mar 7. [Crossref] [PubMed] [PMC]
- Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51(11):5470-5479. [Crossref] [PubMed] [PMC]
- Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 2009;37(8):2539-2548. [Crossref] [PubMed] [PMC]
- Kaarniranta K, Pawlowska E, Szczepanska J, Jablkowska A, Blasiak J. Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD). Int J Mol Sci. 2019;20(10):2374. Published 2019 May 14. [Crossref] [PubMed] [PMC]
- Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027-36031. [Crossref] [PubMed]
- Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev. 2016;2016:3164734. [Crossref] [PubMed] [PMC]
- Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009;43:95-118. [Crossref] [PubMed] [PMC]
- Fisher CR, Ferrington DA. Perspective on AMD Pathobiology: A Bioenergetic Crisis in the RPE. Invest Ophthalmol Vis Sci. 2018;59(4):AMD41-AMD47. [Crossref] [PubMed] [PMC]
- Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. [published correction appears in JAMA. 2013 Jul 10;310(2):208]. JAMA. 2013;309(19):2005-2015. [Crossref] [PubMed]
- Alge CS, Priglinger SG, Neubauer AS, Kampik A, Zillig M, Bloemendal H, et al. Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin. Invest Ophthalmol Vis Sci. 2002;43(11):3575-3582. PMID: 12407170. [PubMed]
- Gangalum RK, Schibler MJ, Bhat SP. Small heat shock protein alphaB-crystallin is part of cell cycle-dependent Golgireorganization. J Biol Chem. 2004;279(42):43374-43377. [Crossref] [PubMed]
- De S, Rabin DM, Salero E, Lederman PL, Temple S, Stern JH. Human retinal pigment epithelium cell changes and expression of alphaB-crystallin: a biomarker for retinal pigment epithelium cell change in age-related macular degeneration. Arch Ophthalmol. 2007;125(5):641-645. [Crossref] [PubMed]
- Dimberg A, Rylova S, Dieterich LC, Olsson AK, Schiller P, Wikner C, et al. alphaB-crystallin promotes tumor angiogenesis by increasing vascular survival during tube morphogenesis. Blood. 2008;111(4):2015-2023. [Crossref] [PubMed]
- Kase S, He S, Sonoda S, Kitamura M, Spee C, Wawrousek E, et al. alphaB-crystallin regulation of angiogenesis by modulation of VEGF. Blood. 2010;115(16):3398-3406. [Crossref] [PubMed] [PMC]
- Watanabe G, Kato S, Nakata H, Ishida T, Ohuchi N, Ishioka C. alphaB-crystallin: a novel p53-target gene required for p53-dependent apoptosis. Cancer Sci. 2009;100(12):2368-2375. [Crossref] [PubMed] [PMC]
- Li DWC, Liu JP, Mao YW, Xiang H, Wang J, Ma WY, et al. Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation. Mol Biol Cell. 2005;16(9):4437-4453. [Crossref] [PubMed] [PMC]
- Sreekumar PG, Chothe P, Sharma KK, Baid R, Kompella U, Spee C, et al. Antiapoptotic properties of α-crystallin-derived peptide chaperones and characterization of their uptake transporters in human RPE cells. Invest Ophthalmol Vis Sci. 2013;54(4):2787-2798. Published 2013 Apr 17. [Crossref] [PubMed] [PMC]
- George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res. 2021;85:100969. [Crossref] [PubMed] [PMC]
- Kokkinopoulos I, Shahabi G, Colman A, Jeffery G. Mature peripheral RPE cells have an intrinsic capacity to proliferate; a potential regulatory mechanism for age-related cell loss. PLoS One. 2011;6(4):e18921. Published 2011 Apr 22. [Crossref] [PubMed] [PMC]
- Kiilgaard JF, Prause JU, Prause M, Scherfig E, Nissen MH, la Cour M. Subretinal posterior pole injury induces selective proliferation of RPE cells in the periphery in in vivo studies in pigs. Invest Ophthalmol Vis Sci. 2007;48(1):355-360. [Crossref] [PubMed]
- von Leithner PL, Ciurtin C, Jeffery G. Microscopic mammalian retinal pigment epithelium lesions induce widespread proliferation with differences in magnitude between center and periphery. Mol Vis. 2010;16:570-581. Published 2010 Mar 31. PMID: 20360994; PMCID: PMC2847682. [PubMed]
- Xia H, Krebs MP, Kaushal S, Scott EW. Enhanced retinal pigment epithelium regeneration after injury in MRL/MpJ mice. Exp Eye Res. 2011;93(6):862-872. [Crossref] [PubMed] [PMC]
- Saini JS, Temple S, Stern JH. Human Retinal Pigment Epithelium Stem Cell (RPESC). Adv Exp Med Biol. 2016;854:557-562. [Crossref] [PubMed]
- Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Chen S, et al. One-Year Follow-Up in a Phase1/2a Clinical Trial of an Allogeneic RPE Cell Bioengineered Implant for Advanced Dry Age-Related Macular Degeneration. Transl Vis Sci Technol. 2021;10(10):13. [Crossref] [PubMed] [PMC]
- Kashani AH, Lebkowski JS, Hinton DR, Zhu D, Faynus MA, Chen S, et al. Survival of an HLA-mismatched, bioengineered RPE implant in dry age-related macular degeneration. Stem Cell Reports. 2022;17(3):448-458. [Crossref] [PubMed] [PMC]
- Harris JR, Fisher R, Jorgensen M, Kaushal S, Scott EW. CD133 progenitor cells from the bone marrow contribute to retinal pigment epithelium repair. Stem Cells. 2009;27(2):457-466. [Crossref] [PubMed]
- Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone Marrow-Derived Stem Cells in the Treatment of Age-Related Macular Degeneration. Medicines (Basel). 2020;7(4):16. Published 2020 Mar 28. [Crossref] [PubMed] [PMC]