The Role of the Vagus Nerve in Rheumatoid Arthritis

geleneksel tip-5-2-wos-kapak

Faize Elif BAHADIRa

aBahçeşehir University Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, İstanbul, Türkiye

ABSTRACT
Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting primary the joints, with an autoimmune etiology. Despite the availability of new generation antirheumatic drugs offering diverse treatment options, a subset of patients may remain unresponsive to these interventions or have contraindications. In the last few decades, the understanding that the vagus nerve (VN) provides bidirectional communication between the nervous system and immune cells has led to exploration of vagus nerve stimulation (VNS) as a potential therapy option for relieving RA symptoms. However, numerous animal and human studies have produced varying results regarding the efficacy of VNS. This inconsistency may stem from the complexity of the underlying pathogenesis of the disease in humans, as well as the lack of standardization in treatment protocols. This highlights the necessity for further research to establish the safety, efficacy, and long-term viability of VNS as a therapeutic option for RA. This review aims to evaluate the role of the VN in RA pathogenesis and therapeutic management, taking into account the complex nature of the disease and the uncertainties surrounding the mechanisms underlying VNS action in RA.
Keywords: Rheumatoid arthritis; vagus nerve stimulation; inflammatory reflex; autonomic imbalance

Referanslar

  1. Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat Immunol. 2021;22(1):10-8. [Crossref]  [PubMed]  [PMC]
  2. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001. [Crossref]  [PubMed]
  3. Xavier RM, Zerbini CAF, Pollak DF, Morales-Torres JLA, Chalem P, Restrepo JFM, et al. Burden of rheumatoid arthritis on patients' work productivity and quality of life. Adv Rheumatol. 2019;59(1):47. [Crossref]  [PubMed]
  4. Wu D, Luo Y, Li T, Zhao X, Lv T, Fang G, et al. Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment. Front Immunol. 2022;13:1051082. [Crossref]  [PubMed]  [PMC]
  5. Di Matteo A, Bathon JM, Emery P. Rheumatoid arthritis. Lancet. 2023;402(10416):2019-33. [Crossref]  [PubMed]
  6. Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res (Hoboken). 2021;73(7):924-39. [Crossref]  [PubMed]  [PMC]
  7. Bugatti S, Manzo A, Montecucco C, Caporali R. The Clinical Value of Autoantibodies in Rheumatoid Arthritis. Front Med (Lausanne). 2018;5:339. [Crossref]  [PubMed]  [PMC]
  8. Trouw LA, Rispens T, Toes REM. Beyond citrullination: other post-translational protein modifications in rheumatoid arthritis. Nat Rev Rheumatol. 2017;13(6):331-9. [Crossref]  [PubMed]
  9. Kelmenson LB, Wagner BD, McNair BK, Frazer-Abel A, Demoruelle MK, Bergstedt DT, et al. Timing of Elevations of Autoantibody Isotypes Prior to Diagnosis of Rheumatoid Arthritis. Arthritis Rheumatol. 2020;72(2):251-61. [Crossref]  [PubMed]  [PMC]
  10. Bugatti S, De Stefano L, Gandolfo S, Ciccia F, Montecucco C. Autoantibody-negative rheumatoid arthritis: still a challenge for the rheumatologist. Lancet Rheumatol. 2023;5(12):e743-e55. [Crossref]  [PubMed]
  11. De Stefano L, D'Onofrio B, Gandolfo S, Bozzalla Cassione E, Mauro D, Manzo A, et al. Seronegative rheumatoid arthritis: one year in review 2023. Clin Exp Rheumatol. 2023;41(3):554-64. [Crossref]
  12. Ben Mrid R, Bouchmaa N, Ainani H, El Fatimy R, Malka G, Mazini L. Anti-rheumatoid drugs advancements: New insights into the molecular treatment of rheumatoid arthritis. Biomed Pharmacother. 2022;151:113126. [Crossref]  [PubMed]
  13. George G, Shyni GL, Raghu KG. Current and novel therapeutic targets in the treatment of rheumatoid arthritis. Inflammopharmacology. 2020;28(6):1457-76. [Crossref]  [PubMed]
  14. Burgers LE, Raza K, van der Helm-van Mil AH. Window of opportunity in rheumatoid arthritis - definitions and supporting evidence: from old to new perspectives. RMD Open. 2019;5(1):e000870. [Crossref]  [PubMed]  [PMC]
  15. Favalli EG, Desiati F, Atzeni F, Sarzi-Puttini P, Caporali R, Pallavicini FB, et al. Serious infections during anti-TNFalpha treatment in rheumatoid arthritis patients. Autoimmun Rev. 2009;8(3):266-73. [Crossref]  [PubMed]
  16. Koenders MI, van den Berg WB. Novel therapeutic targets in rheumatoid arthritis. Trends Pharmacol Sci. 2015;36(4):189-95. [Crossref]  [PubMed]
  17. Conran C, Kolfenbach J, Kuhn K, Striebich C, Moreland L. A Review of Difficult-to-Treat Rheumatoid Arthritis: Definition, Clinical Presentation, and Management. Curr Rheumatol Rep. 2023;25(12):285-94. [Crossref]  [PubMed]
  18. Pavlov VA, Tracey KJ. Bioelectronic medicine: Preclinical insights and clinical advances. Neuron. 2022;110(21):3627-44. [Crossref]  [PubMed]  [PMC]
  19. Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594(20):5781-90. [Crossref]  [PubMed]  [PMC]
  20. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117(2):289-96. [Crossref]  [PubMed]  [PMC]
  21. Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113(29):8284-9. [Crossref]  [PubMed]  [PMC]
  22. Redgrave J, Day D, Leung H, Laud PJ, Ali A, Lindert R, et al. Safety and tolerability of Transcutaneous Vagus Nerve stimulation in humans; a systematic review. Brain Stimul. 2018;11(6):1225-38. [Crossref]  [PubMed]
  23. Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. 2015;22(9):1260-8. [Crossref]  [PubMed]  [PMC]
  24. Spuck S, Tronnier V, Orosz I, Schönweiler R, Sepehrnia A, Nowak G, et al. Operative and technical complications of vagus nerve stimulator implantation. Neurosurgery. 2010;67(2 Suppl Operative):489-94. [Crossref]  [PubMed]
  25. Tarner IH, Härle P, Müller-Ladner U, Gay RE, Gay S. The different stages of synovitis: acute vs chronic, early vs late and non-erosive vs erosive. Best Pract Res Clin Rheumatol. 2005;19(1):19-35. [Crossref]  [PubMed]
  26. Kurowska-Stolarska M, Alivernini S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat Rev Rheumatol. 2022;18(7):384-97. [Crossref]  [PubMed]
  27. Orr C, Vieira-Sousa E, Boyle DL, Buch MH, Buckley CD, Cañete JD, et al. Synovial tissue research: a state-of-the-art review. Nat Rev Rheumatol. 2017; 13(10):630. Erratum for: Nat Rev Rheumatol. 2017;13(8):463-75. [Crossref]  [PubMed]
  28. Bhattaram P, Chandrasekharan U. The joint synovium: A critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol. 2017;62:86-93. [Crossref]  [PubMed]
  29. Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233-55. [Crossref]  [PubMed]  [PMC]
  30. Cutolo M, Campitiello R, Gotelli E, Soldano S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front Immunol. 2022;13:867260. [Crossref]  [PubMed]  [PMC]
  31. Song Y, Gao N, Yang Z, Zhang L, Wang Y, Zhang S, Fan T. Characteristics, polarization and targeted therapy of mononuclear macrophages in rheumatoid arthritis. Am J Transl Res. 2023;15(3):2109-21.
  32. Tardito S, Martinelli G, Soldano S, Paolino S, Pacini G, Patane M, et al. Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev. 2019;18(11):102397. [Crossref]  [PubMed]
  33. Wehr P, Purvis H, Law SC, Thomas R. Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clin Exp Immunol. 2019;196(1):12-27. [Crossref]  [PubMed]  [PMC]
  34. Volkov M, van Schie KA, van der Woude D. Autoantibodies and B Cells: The ABC of rheumatoid arthritis pathophysiology. Immunol Rev. 2020;294(1):148-63. [Crossref]  [PubMed]  [PMC]
  35. Vu Van D, Beier KC, Pietzke LJ, Al Baz MS, Feist RK, Gurka S, et al. Local T/B cooperation in inflamed tissues is supported by T follicular helper-like cells. Nat Commun. 2016;7:10875. [Crossref]  [PubMed]  [PMC]
  36. Masoumi M, Alesaeidi S, Khorramdelazad H, Behzadi M, Baharlou R, Alizadeh-Fanalou S, et al. Role of T Cells in the Pathogenesis of Rheumatoid Arthritis: Focus on Immunometabolism Dysfunctions. Inflammation. 2023;46(1):88-102. [Crossref]  [PubMed]
  37. Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9(1):24-33. [Crossref]  [PubMed]  [PMC]
  38. Mousavi MJ, Karami J, Aslani S, Tahmasebi MN, Vaziri AS, Jamshidi A, et al Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. Auto Immun Highlights. 2021;12(1):3. [Crossref]  [PubMed]  [PMC]
  39. da Fonseca LJS, Nunes-Souza V, Goulart MOF, Rabelo LA. Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies. Oxid Med Cell Longev. 2019;2019:7536805. [Crossref]  [PubMed]  [PMC]
  40. Romas E, Gillespie MT, Martin TJ. Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone. 2002;30(2):340-6. [Crossref]  [PubMed]
  41. Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol. 2022;18(7):415-29. [Crossref]  [PubMed]
  42. Raychaudhuri S. Recent advances in the genetics of rheumatoid arthritis. Curr Opin Rheumatol. 2010;22(2):109-18. [Crossref]  [PubMed]  [PMC]
  43. Holers VM, Demoruelle MK, Kuhn KA, Buckner JH, Robinson WH, Okamoto Y, et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat Rev Rheumatol. 2018;14(9):542-57. [Crossref]  [PubMed]  [PMC]
  44. Mangat P, Wegner N, Venables PJ, Potempa J. Bacterial and human peptidylarginine deiminases: targets for inhibiting the autoimmune response in rheumatoid arthritis? Arthritis Res Ther. 2010;12(3):209. [Crossref]  [PubMed]  [PMC]
  45. Vitkov L, Hannig M, Minnich B, Herrmann M. Periodontal sources of citrullinated antigens and TLR agonists related to RA. Autoimmunity. 2018;51(6):304-9. [Crossref]  [PubMed]
  46. Aerts NE, Ebo DG, Bridts CH, Stevens WJ, De Clerck LS. T cell signal transducer and activator of transcription (STAT) 4 and 6 are affected by adalimumab therapy in rheumatoid arthritis. Clin Exp Rheumatol. 2010;28(2):208-14.
  47. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376-81. [Crossref]  [PubMed]  [PMC]
  48. Chen DP, Wen YH, Lin WT, Hsu FP, Yu KH. Exploration of the association between the single-nucleotide polymorphism of co-stimulatory system and rheumatoid arthritis. Front Immunol. 2023;14:1123832. [Crossref]  [PubMed]  [PMC]
  49. Straub RH, Cutolo M. Involvement of the hypothalamic--pituitary--adrenal/gonadal axis and the peripheral nervous system in rheumatoid arthritis: viewpoint based on a systemic pathogenetic role. Arthritis Rheum. 2001;44(3):493-507. [Crossref]  [PubMed]
  50. Bellocchi C, Carandina A, Montinaro B, Targetti E, Furlan L, Rodrigues GD, et al. The Interplay between Autonomic Nervous System and Inflammation across Systemic Autoimmune Diseases. Int J Mol Sci. 2022;23(5):2449. [Crossref]  [PubMed]  [PMC]
  51. Adlan AM, Lip GY, Paton JF, Kitas GD, Fisher JP. Autonomic function and rheumatoid arthritis: a systematic review. Semin Arthritis Rheum. 2014;44(3):283-304. [Crossref]  [PubMed]
  52. Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci. 2014;182:15-41. [Crossref]  [PubMed]
  53. Kox M, Pickkers P. Modulation of the Innate Immune Response through the Vagus Nerve. Nephron. 2015;131(2):79-84. [Crossref]  [PubMed]
  54. Bonaz B. Autonomic Dysfunction: A Predictive Factor of Risk to Develop Rheumatoid Arthritis? EBioMedicine. 2016;6:20-1. [Crossref]  [PubMed]  [PMC]
  55. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun. 2007;21(6):736-45. [Crossref]  [PubMed]  [PMC]
  56. Dimitrov S, Lange T, Born J. Selective mobilization of cytotoxic leukocytes by epinephrine. J Immunol. 2010;184(1):503-11. [Crossref]  [PubMed]
  57. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85(1-3):1-17. [Crossref]  [PubMed]
  58. Bonaz B, Sinniger V, Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front Immunol. 2017;8:1452. [Crossref]  [PubMed]  [PMC]
  59. FineSmith RB, Zampella E, Devinsky O. Vagal nerve stimulator: a new approach to medically refractory epilepsy. N J Med. 1999;96(6):37-40.
  60. Watkins LR, Maier SF, Goehler LE. Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci. 1995;57(11):1011-26. [Crossref]  [PubMed]
  61. Maier SF, Goehler LE, Fleshner M, Watkins LR. The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci. 1998;840:289-300. [Crossref]  [PubMed]
  62. Goehler LE, Gaykema RP, Nguyen KT, Lee JE, Tilders FJ, Maier SF, et al. Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci. 1999;19(7):2799-806. [Crossref]  [PubMed]  [PMC]
  63. Imrich R, Rovenský J. Hypothalamic-pituitary-adrenal axis in rheumatoid arthritis. Rheum Dis Clin North Am. 2010;36(4):721-7. [Crossref]  [PubMed]
  64. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458-62. [Crossref]  [PubMed]
  65. Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci. 2000;85(1-3):141-7. [Crossref]  [PubMed]
  66. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853-9. [Crossref]  [PubMed]
  67. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384-8. [Crossref]  [PubMed]
  68. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203(7):1623-8. [Crossref]  [PubMed]  [PMC]
  69. Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105(31):11008-13. [Crossref]  [PubMed]  [PMC]
  70. Martelli D, Yao ST, McKinley MJ, McAllen RM. Reflex control of inflammation by sympathetic nerves, not the vagus. J Physiol. 2014;592(7):1677-86. [Crossref]  [PubMed]  [PMC]
  71. Bratton BO, Martelli D, McKinley MJ, Trevaks D, Anderson CR, McAllen RM. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp Physiol. 2012;97(11):1180-5. [Crossref]  [PubMed]
  72. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98-101. [Crossref]  [PubMed]  [PMC]
  73. Tarnawski L, Reardon C, Caravaca AS, Rosas-Ballina M, Tusche MW, Drake AR, et al. Adenylyl Cyclase 6 Mediates Inhibition of TNF in the Inflammatory Reflex. Front Immunol. 2018;9:2648. [Crossref]  [PubMed]  [PMC]
  74. Bonaz B. The vagus nerve and the sympathetic nervous system act in concert to modulate immunity. Brain Behav Immun. 2020;84:6-7. [Crossref]  [PubMed]
  75. Murray K, Barboza M, Rude KM, Brust-Mascher I, Reardon C. Functional circuitry of neuro-immune communication in the mesenteric lymph node and spleen. Brain Behav Immun. 2019;82:214-23. [Crossref]  [PubMed]  [PMC]
  76. Komisaruk BR, Frangos E. Vagus nerve afferent stimulation: Projection into the brain, reflexive physiological, perceptual, and behavioral responses, and clinical relevance. Auton Neurosci. 2022;237:102908. [Crossref]  [PubMed]
  77. Kraus T, Kiess O, Hösl K, Terekhin P, Kornhuber J, Forster C. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimul. 2013;6(5):798-804. [Crossref]  [PubMed]
  78. Bai X, Zhou B, Wu S, Zhang X, Zuo X, Li T. GTS-21 alleviates murine collagen-induced arthritis through inhibition of peripheral monocyte trafficking into the synovium. Int Immunopharmacol. 2023;122:110676. [Crossref]  [PubMed]
  79. van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, Vervoordeldonk MJ, et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 2009;60(1):114-22. [Crossref]  [PubMed]
  80. Levine YA, Koopman FA, Faltys M, Caravaca A, Bendele A, Zitnik R, et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One. 2014;9(8):e104530. [Crossref]  [PubMed]  [PMC]
  81. Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med. 2017;282(1):64-75. [Crossref]  [PubMed]
  82. Bonaz B, Sinniger V, Pellissier S. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterol Motil. 2016;28(4):455-62. [Crossref]  [PubMed]
  83. Lv C, Sun M, Guo Y, Xia W, Qiao S, Tao Y, et al. Cholinergic dysfunction-induced insufficient activation of alpha7 nicotinic acetylcholine receptor drives the development of rheumatoid arthritis through promoting protein citrullination via the SP3/PAD4 pathway. Acta Pharm Sin B. 2023;13(4):1600-15. [Crossref]  [PubMed]  [PMC]
  84. Bassi GS, Dias DPM, Franchin M, Talbot J, Reis DG, Menezes GB, et al. Modulation of experimental arthritis by vagal sensory and central brain stimulation. Brain Behav Immun. 2017;64:330-43. [Crossref]  [PubMed]  [PMC]
  85. Bassi GS, Ulloa L, Santos VR, Del Vecchio F, Delfino-Pereira P, Rodrigues GJ, et al. Cortical stimulation in conscious rats controls joint inflammation. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84(Pt A):201-13. [Crossref]  [PubMed]  [PMC]
  86. Addorisio ME, Imperato GH, de Vos AF, Forti S, Goldstein RS, Pavlov VA, et al. Investigational treatment of rheumatoid arthritis with a vibrotactile device applied to the external ear. Bioelectron Med. 2019;5:4. [Crossref]  [PubMed]  [PMC]
  87. Genovese MC, Gaylis NB, Sikes D, Kivitz A, Lewis Horowitz D, Peterfy C, et al. Safety and efficacy of neurostimulation with a miniaturised vagus nerve stimulation device in patients with multidrug-refractory rheumatoid arthritis: a two-stage multicentre, randomised pilot study. Lancet Rheumatol. 2020;2(9):e527-e38. [Crossref]  [PubMed]
  88. Fleischmann R. Is There a Role for Vagal Nerve Stimulation in the Treatment of Rheumatoid Arthritis? Arthritis Rheumatol. 2023;75(12):2103-5. [Crossref]  [PubMed]
  89. Carlens C, Brandt L, Klareskog L, Lampa J, Askling J. The inflammatory reflex and risk for rheumatoid arthritis: a case-control study of human vagotomy. Ann Rheum Dis. 2007;66(3):414-6. [Crossref]  [PubMed]  [PMC]
  90. Baker MC, Kavanagh S, Cohen S, Matsumoto AK, Dikranian A, Tesser J, et al. A Randomized, Double-Blind, Sham-Controlled, Clinical Trial of Auricular Vagus Nerve Stimulation for the Treatment of Active Rheumatoid Arthritis. Arthritis Rheumatol. 2023;75(12):2107-15. [Crossref]  [PubMed]
  91. Kemble S, Croft AP. Critical Role of Synovial Tissue-Resident Macrophage and Fibroblast Subsets in the Persistence of Joint Inflammation. Front Immunol. 2021;12:715894. [Crossref]  [PubMed]  [PMC]
  92. Kelly MJ, Breathnach C, Tracey KJ, Donnelly SC. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep Med. 2022;3(7):100696. [Crossref]  [PubMed]  [PMC]
  93. Keever KR, Cui K, Casteel JL, Singh S, Hoover DB, Williams DL, et al. Cholinergic signaling via the α7 nicotinic acetylcholine receptor regulates the migration of monocyte-derived macrophages during acute inflammation. J Neuroinflammation. 2024;21(1):3. [Crossref]  [PubMed]  [PMC]
  94. Siouti E, Andreakos E. The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol. 2019;165:152-69. [Crossref]  [PubMed]
  95. van Maanen MA, Vervoordeldonk MJ, Tak PP. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol. 2009;5(4):229-32. [Crossref]  [PubMed]
  96. Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol. 2006;6(4):318-28. [Crossref]  [PubMed]  [PMC]
  97. Wrona D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol. 2006;172(1-2):38-58. [Crossref]  [PubMed]
  98. Özden AV. Vagus Nerve Stimulation in Peripheral Targets. In: Frasch MG, Porges EC, eds. Vagus Nerve Stimulation. New York, NY: Springer US; 2024. p.1-29. [Crossref]