Toxicity and Chemical Properties of Graphene

periodontoloji-9-3-2023

Tan Fırat EYÜBOĞLUa

aİstanbul Medipol University Faculty of Dentistry, Department of Endodontics, İstanbul, Türkiye

ABSTRACT
This article provides a comprehensive overview of the toxicity and chemical properties of graphene oxide (GnO). GnO is a versatile material with unique properties, making it suitable for various applications. It is produced through chemical modification of graphite oxide, resulting in oxygenated functional groups on its surface. The chemical properties and various methods of production of GnO are extensively discussed, highlighting its stability, reactivity, electron mobility, transparency, mechanical strength, thermal conductivity, gas barrier properties, and potential in chemical sensing. The toxicity of GnO was also provided both in cell cultures and in vivo studies. Factors affecting GnO toxicity, such as dose, physicochemical properties, and exposure routes, as well as mechanism of are examined in detail. In conclusion, GO’s chemical properties and potential applications are promising, but its toxicity remains a complex and multifaceted issue. Further research is necessary to fully understand the material’s impact on human health and minimize associated risks.
Keywords: Graphene oxide; graphite; oxidation-reduction; toxicity

Referanslar

  1. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183-91. [Crossref]  [PubMed]
  2. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228-40. [Crossref]  [PubMed]
  3. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol. 2009;4(4):217-24. Erratum in: Nat Nanotechnol. 2010;5(4):309. [Crossref]  [PubMed]
  4. Buchsteiner A, Lerf A, Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B. 2006;110(45):22328-38. [Crossref]  [PubMed]
  5. Hajian R, Fung K, Chou PP, Wang SW, S, Balderston S, Kiana A, Properties and Applications of Functionalized Graphene Oxide. Mater Matters. 2019;14:37-45.
  6. Hanns-Peter Boehm HP, Stumpp E, Citation errors concerning the first report on exfoliated graphite. Carbon. 2007;45(7):1381-3. [Crossref]
  7. Collins BB. XIII. On the atomic weight of graphite. Phil Trans R Soc. 1859;149:249-59. [Crossref]
  8. Staudenmaier L. Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges., 1898;31:1481-7. [Crossref]
  9. Hummers WS, Offeman RE. Preparation of Graphitic Oxide. J Am Chem Soc. 1958;80(6):1339. [Crossref]
  10. Alam SN, Sharma N, Kumar L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO). Graphene. 2017;06(01):1-18. [Crossref]
  11. Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nature Nanotech. 2008;3(8):491-5. [Crossref]  [PubMed]
  12. Eda G, Mattevi C, Yamaguchi H, Kim H, Chhowalla M. Insulator to Semimetal Transition in Graphene Oxide. J Phys Chem C. 2009;113(35):15768-71. [Crossref]
  13. Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett. 2007;7(11):3499-503. [Crossref]  [PubMed]
  14. Chen D, Feng H, Li J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem Rev. 2012;112(11):6027-53. [Crossref]  [PubMed]
  15. Shams N, Lim HN, Hajian R, Yusof NA, Abdullah J, Sulaiman Y, et al. Electrochemical sensor based on gold nanoparticles/ethylenediamine-reduced graphene oxide for trace determination of fenitrothion in water. RSC Adv. 2016;6(92):89430-9. [Crossref]
  16. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JM. Graphene oxide dispersions in organic solvents. Langmuir. 2008;24(19):10560-4. [Crossref]  [PubMed]
  17. Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett. 2008;8(6):1679-82. [Crossref]  [PubMed]
  18. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;47(7):1558-65. [Crossref]
  19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-9. [Crossref]  [PubMed]
  20. Shin H, Kim KK, Benayad A, Yoon S, Park HK, Jung I, et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials. 2009;19(12):1987-92. [Crossref]
  21. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials. 2007;19(18):4396-404. [Crossref]
  22. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535-9. [Crossref]  [PubMed]
  23. Sundaram RS, Gómez-Navarro C, Balasubramanian K, Burghard M, Kern K. Electrochemical Modification of Graphene. Advanced Materials. 2008;20(16):3050-3. [Crossref]
  24. Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, et al. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry - A European Journal. 2009;15(25):6116-20. [Crossref]  [PubMed]
  25. Wang S, Chia PJ, Chua LL, Zhao LH, Png RQ, Sivaramakrishnan S, et al. Band-like Transport in Surface-Functionalized Highly Solution-Processable Graphene Nanosheets. Advanced Materials. 2008;20(18):3440-6. [Crossref]
  26. Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chemical Communications. 2009;(26):3880. [Crossref]  [PubMed]
  27. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN. A Graphene Platform for Sensing Biomolecules. Angewandte Chemie International Edition. 2009;48(26):4785-7. [Crossref]  [PubMed]
  28. Zu SZ, Han BH. Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers: Formation of Supramolecular Hydrogel. The Journal of Physical Chemistry C. 2009;113(31):13651-7. [Crossref]
  29. Hao R, Qian W, Zhang L, Hou Y. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chemical Communications. 2008;(48):6576. [Crossref]  [PubMed]
  30. Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. Journal of the American Chemical Society. 2008;130(48):16201-6. [Crossref]  [PubMed]
  31. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D. Biocompatibility of Graphene Oxide. Nanoscale Res Lett. 2011;6(1):8. [Crossref]
  32. Zhao F, Meng H, Yan L, Wang B, Zhao Y. Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Science Bulletin. 2015;60(1):3-20. [Crossref]
  33. Wang A, Pu K, Dong B, Liu Y, Zhang L, Zhang Z, et al. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. Journal of Applied Toxicology. 2013;33(10):1156-64. [Crossref]  [PubMed]
  34. Lv M, Zhang Y, Liang L, Wei M, Hu W, Li X, et al. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line. Nanoscale. 2012;4(13):3861. [Crossref]  [PubMed]
  35. Arbo MD, Altknecht LF, Cattani S, Braga WV, Peruzzi CP, Cestonaro LV, et al. In vitro cardiotoxicity evaluation of graphene oxide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2019;841:8-13. [Crossref]  [PubMed]
  36. Duch MC, Budinger GRS, Liang YT, Soberanes S, Urich D, Chiarella SE, et al. Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung. Nano Letters. 2011;11(12):5201-7. [Crossref]  [PubMed]  [PMC]
  37. Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon. 2011;49(3):986-95. [Crossref]
  38. Itoh H, Nishino M, Hatabu H. Architecture of the Lung. Journal of Thoracic Imaging. 2004;19(4):221-7. [Crossref]  [PubMed]
  39. Li B, Zhang X, Yang J, Zhang Y, Li W, Fan C, et al. Influence of polyethylene glycol coating onbiodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. International Journal of Nanomedicine. 2014:4697. [Crossref]  [PubMed]  [PMC]
  40. Han SG, Kim JK, Shin JH, Hwang JH, Lee JS, Kim TG, et al. Pulmonary Responses of Sprague-Dawley Rats in Single Inhalation Exposure to Graphene Oxide Nanomaterials. BioMed Research International. 2015;2015:1-9. [Crossref]  [PubMed]  [PMC]
  41. Li B, Yang J, Huang Q, Zhang Y, Peng C, Zhang Y, et al. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Materials. 2013;5(4):e44-e44. [Crossref]
  42. Mao L, Hu M, Pan B, Xie Y, Petersen EJ. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Particle and Fibre Toxicology. 2015;13(1). [Crossref]  [PubMed]  [PMC]
  43. Patlolla AK, Rondalph J, Tchounwou PB. Biochemical and Histopathological Evaluation of Graphene Oxide in Sprague-Dawley Rats. Austin J Environ Toxicol. 2017;3(1):1021.
  44. Patlolla A, Randolph J, Kumari S, Tchounwou P. Toxicity Evaluation of Graphene Oxide in Kidneys of Sprague-Dawley Rats. International Journal of Environmental Research and Public Health. 2016;13(4):380. [Crossref]  [PubMed]  [PMC]
  45. Kim M, Eom HJ, Choi I, Hong J, Choi J. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans. NeuroToxicology. 2020;77:30-9. [Crossref]  [PubMed]
  46. Li Y, Wang Y, Tu L, Chen D, Luo Z, Liu D, et al. Sub-Acute Toxicity Study of Graphene Oxide in the Sprague-Dawley Rat. International Journal of Environmental Research and Public Health. 2016;13(11):1149. [Crossref]  [PubMed]  [PMC]
  47. Liu XT, Mu XY, Wu XL, Meng LX, Guan WB, Ma YQ, et al. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos. Biomed Environ Sci. 2014;27(9):676-83.
  48. Fu C, Liu T, Li L, Liu H, Liang Q, Meng X. Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials. 2015;40:23-31. [Crossref]  [PubMed]
  49. Liang S, Xu S, Zhang D, He J, Chu M. Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology. 2014;9(1):92-105. [Crossref]  [PubMed]
  50. Bengtson S, Kling K, Madsen AM, Noergaard AW, Jacobsen NR, Clausen PA, et al. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro. Environmental and Molecular Mutagenesis. 2016;57(6):469-82. [Crossref]  [PubMed]  [PMC]
  51. Mohamed HRH, Welson M, Yaseen AE, EL-Ghor AA. Estimation of genomic instability and mutation induction by graphene oxide nanoparticles in mice liver and brain tissues. Environmental Science and Pollution Research. 2019;27(1):264-78. [Crossref]  [PubMed]
  52. Tu Y, Fang H. Destructive extraction of phospholipids from cell membranes by graphene and graphene oxide nanosheets. Scientia Sinica Physica, Mechanica & Astronomica. 2016;46(6):060501. [Crossref]
  53. Hu C, Wang Q, Zhao H, Wang L, Guo S, Li X. Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere. 2015;128:184-90. [Crossref]  [PubMed]
  54. Li J, Zhang X, Jiang J, Wang Y, Jiang H, Zhang J, et al. Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Toxicological Sciences. 2018;167(1):269-81. [Crossref]  [PubMed]
  55. Mu Q, Su G, Li L, Gilbertson BO, Yu LH, Zhang Q, et al. Size-Dependent Cell Uptake of Protein-Coated Graphene Oxide Nanosheets. ACS Applied Materials & Interfaces. 2012;4(4):2259-66. [Crossref]  [PubMed]