TRANSCRANIAL MAGNETIC STIMULATION APPLICATIONS IN ALZHEIMER’S DISEASE

Halil Aziz Velioğlu1,2

1Center for Psychiatric Neuroscience, Feinstein Institutes for Medical Research, Manhasset, NY, USA

2İstanbul Medipol University, Department of Neuroscience, İstanbul, Türkiye

Velioğlu HA. Transcranial Magnetic Stimulation Applications in Alzheimer’s Disease. In: Hanoğlu L, editor. From Neuroscience Laboratory to Neurology Clinic. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.5969.

ABSTRACT

Transcranial Magnetic Stimulation (TMS) is a noninvasive neurophysiological technique that has emerged as a promising treatment for Alzheimer’s disease (AD), offering potential benefits in enhancing cognitive functions, memory, and language abilities. TMS operates by delivering targeted magnetic pulses to the brain, inducing electrical currents in the cortex, which can modulate neural circuits associated with cognitive and behavioral functions. While TMS holds therapeutic promise, patient responses vary widely, emphasizing the need to understand factors influencing treatment efficacy. Advanced techniques, such as neuroimaging and machine learning, are being utilized to personalize TMS protocols, aiming to improve outcomes by tailoring stimulation to each patient’s neural profile.

Research on TMS in AD has explored various stimulation frequencies, target areas, and protocols. Repetitive TMS (rTMS) applied to regions such as the dorsolateral prefrontal cortex (DLPFC), Broca’s area, and Wernicke’s area has shown effectiveness in addressing language impairments and enhancing cognitive functions, including memory and executive abilities. Innovations such as intermittent thetaburst stimulation (iTBS) have further optimized TMS protocols, providing shorter, efficient treatment sessions that enhance cortical excitability and plasticity. Combining TMS with other therapeutic modalities, such as pharmacological interventions, transcranial direct current stimulation (tDCS), or cognitive training, has demonstrated synergistic effects, potentially extending and sustaining cognitive improvements.

Challenges persist, including the need to understand and enhance response variability and to sustain TMS effects over time. Future directions focus on refining TMS with advanced neuroimaging and datadriven methods, enabling clinicians to predict TMS responders and optimize protocols. The integration of TMS within comprehensive care strategies for AD may shift TMS from an adjunctive treatment to a core therapeutic option, offering new hope for slowing cognitive decline and improving quality of life for patients and their families. Through continued innovation, TMS holds significant potential to become a transformative approach in the treatment of Alzheimer’s disease.

Keywords: Transcranial magnetic stimulation; Alzheimer’s disease; Cognitive enhancement; Personalized neurostimulation; Neuroplasticity

Referanslar

  1. Barker AT, Jalinous R, Freeston IL. Noninvasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):11061107. [Crossref]  [PubMed]
  2. Wagner T, ValeroCabre A, PascualLeone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng. 2007;9:527565. [Crossref]  [PubMed]
  3. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406(6792):147150. [Crossref]  [PubMed]
  4. Wagner T, Rushmore J, Eden U, ValeroCabre A. Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex. 2009;45(9):10251034. [Crossref]  [PubMed]  [PMC]
  5. Deng Z De, Lisanby SH, Peterchev A V. Electric field depthfocality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):113. [Crossref]  [PubMed]  [PMC]
  6. Wagner TA, Zahn M, Grodzinsky AJ, PascualLeone A. Threedimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng. 2004;51(9):15861598. [Crossref]  [PubMed]
  7. Horvath JC, Perez JM, Forrow L, Fregni F, PascualLeone A. Transcranial magnetic stimulation: a historical evaluation and future prognosis of therapeutically relevant ethical concerns. J Med Ethics. 2011;37(3):137143. [Crossref]  [PubMed]
  8. Kobayashi M, PascualLeone A. Transcranial magnetic stimulation in neurology. Lancet Neurology. 2003;2(3):145156. [Crossref]  [PubMed]
  9. Rotenberg A, Horvath JC, PascualLeone A. The Transcranial Magnetic Stimulation (TMS) device and foundational techniques. Neuromethods. 2014;89:313. [Crossref]
  10. Davis NJ, Gold E, PascualLeone A, Bracewell RM. Challenges of proper placebo control for noninvasive brain stimulation in clinical and experimental applications. Eur J Neurosci. 2013;38(7):29732977. [Crossref]  [PubMed]
  11. Fried PJ, ElkinFrankston S, Rushmore RJ, Hilgetag CC, ValeroCabre A. Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex. PLoS One. 2011;6(11). [Crossref]  [PubMed]  [PMC]
  12. Robertson EM, Tormos JM, Maeda F, PascualLeone A. The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cereb Cortex. 2001;11(7):628635. [Crossref]  [PubMed]
  13. ValeroCabré A, Payne BR, PascualLeone A. Opposite impact on 14C2deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res. 2007;176(4):603615. [Crossref]  [PubMed]
  14. Quentin R, Elkin Frankston S, Vernet M, et al. Visual Contrast Sensitivity Improvement by Right Frontal HighBeta Activity Is Mediated by Contrast Gain Mechanisms and Influenced by FrontoParietal White Matter Microstructure. Cereb Cortex. 2016;26(6):23812390. [Crossref]  [PubMed]  [PMC]
  15. Fox MD, Buckner RL, Liu H, Mallar Chakravarty M, Lozano AM, PascualLeone A. Restingstate networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci U S A. 2014;111(41):E4367E4375. [Crossref]  [PubMed]  [PMC]
  16. Klomjai W, Katz R, LackmyVallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208213. [Crossref]  [PubMed]
  17. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201206. [Crossref]  [PubMed]
  18. Birks J. Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev. 2006;2006(1). [Crossref]  [PubMed]  [PMC]
  19. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer's Disease. N Engl J Med. 2023;388(1):921. [Crossref]  [PubMed]
  20. Sperling RA, Jack CR, Aisen PS. Testing the right target and right drug at the right stage. Sci Transl Med. 2011;3(111). [Crossref]  [PMC]
  21. Freitas C, MondragónLlorca H, PascualLeone A. Noninvasive brain stimulation in Alzheimer's disease: systematic review and perspectives for the future. Exp Gerontol. 2011;46(8):611627. [Crossref]  [PubMed]  [PMC]
  22. Cantone M, Di Pino G, Capone F, et al. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol. 2014;125(8):15091532. [Crossref]  [PubMed]
  23. Manenti R, Cotelli M, Robertson IH, Miniussi C. Transcranial brain stimulation studies of episodic memory in young adults, elderly adults and individuals with memory dysfunc tion: a review. Brain Stimul. 2012;5(2):103109. [Crossref]  [PubMed]
  24. Devi G, Voss HU, Levine D, et al. Openlabel, shortterm, repetitive transcranial magnetic stimulation in patients with Alzheimer's disease with functional imaging correlates and literature review. Am J Alzheimers Dis Other Demen. 2014;29(3):248255. [Crossref]  [PubMed]  [PMC]
  25. Sasaki N, Kakuda W, Abo M. Bilateral highand lowfrequency rTMS in acute stroke patients with hemiparesis: a comparative study with unilateral highfrequency rTMS. Brain Inj. 2014;28(1314):16821686. [Crossref]  [PubMed]
  26. Lee J, Choi BH, Oh E, Sohn EH, Lee AY. Treatment of Alzheimer's Disease with Repetitive Transcranial Magnetic Stimulation Combined with Cognitive Training: A Prospective, Randomized, DoubleBlind, PlaceboControlled Study. J Clin Neurol. 2016;12(1):5764. [Crossref]  [PubMed]  [PMC]
  27. Ahmed MA, Darwish ES, Khedr EM, El Serogy YM, Ali AM. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neurol. 2012;259(1):8392. [Crossref]  [PubMed]
  28. Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, doubleblind study. J Neural Transm (Vienna). 2013;120(5):813819. [Crossref]  [PubMed]
  29. Bentwich J, Dobronevsky E, Aichenbaum S, et al. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: a proof of concept study. J Neural Transm (Vienna). 2011;118(3):463471. [Crossref]  [PubMed]
  30. Zhao J, Li Z, Cong Y, et al. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer's disease patients. Oncotarget. 2017;8(20):3386433871. [Crossref]  [PubMed]  [PMC]
  31. Rutherford G, Lithgow B, Moussavi Z. Short and Longterm Effects of rTMS Treatment on Alzheimer's Disease at Different Stages: A Pilot Study. J Exp Neurosci. 2015;9(9):4351. [Crossref]  [PubMed]  [PMC]
  32. Cotelli M, Manenti R, Cappa SF, et al. Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol. 2006;63(11):16021604. [Crossref]  [PubMed]
  33. Cotelli M, Manenti R, Cappa SF, Zanetti O, Miniussi C. Transcranial magnetic stimulation improves naming in Alz heimer disease patients at different stages of cognitive decline. Eur J Neurol. 2008;15(12):12861292. [Crossref]  [PubMed]
  34. Cotelli M, Calabria M, Manenti R, et al. Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry. 2011;82(7):794797. [Crossref]  [PubMed]
  35. Li X, Qi G, Yu C, et al. Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment. Brain Stimul. 2021;14(3):503510. [Crossref]  [PubMed]
  36. Sabbagh M, Sadowsky C, Tousi B, et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer's disease. Alzheimers Dement. 2020;16(4):641650. [Crossref]  [PubMed]
  37. Kumar S, Zomorrodi R, Ghazala Z, et al. Effects of repetitive paired associative stimulation on brain plasticity and working memory in Alzheimer's disease: a pilot randomized doubleblindcontrolled trial. Int Psychogeriatr. 2023;35(3):143155. [Crossref]  [PubMed]
  38. Zhou X, Wang Y, Lv S, et al. Transcranial magnetic stimulation for sleep disorders in Alzheimer's disease: A doubleblind, randomized, and shamcontrolled pilot study. Neurosci Lett. 2022;766. [Crossref]  [PubMed]
  39. Wu Y, Xu W, Liu X, Xu Q, Tang L, Wu S. Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer's disease: a randomized, doubleblind, shamcontrolled study. Shanghai Arch Psychiatry. 2015;27(5):280288.
  40. Vecchio F, Quaranta D, Miraglia F, et al. Neuronavigated Magnetic Stimulation combined with cognitive training for Alzheimer's patients: an EEG graph study. Geroscience. 2022;44(1):159172. [Crossref]  [PubMed]  [PMC]
  41. Moussavi Z, Uehara M, Rutherford G, et al. Repetitive transcranial magnetic stimulation as a treatment for Alzheimer's disease: A randomized placebocontrolled doubleblind clinical trial. Neurotherapeutics. 2024;21(3). [Crossref]  [PubMed]  [PMC]
  42. Hu Y, Jia Y, Sun Y, et al. Efficacy and safety of simultaneous rTMStDCS over bilateral angular gyrus on neuropsychiatric symptoms in patients with moderate Alzheimer's disease: A prospective, randomized, shamcontrolled pilot study. Brain Stimul. 2022;15(6):15301537. [Crossref]  [PubMed]
  43. Chen HF, Sheng XN, Yang ZY, et al. Multinetworks connectivity at baseline predicts the clinical efficacy of left angular gyrusnavigated rTMS in the spectrum of Alzheimer's disease: A shamcontrolled study. CNS Neurosci Ther. 2023;29(8):22672280. [Crossref]  [PubMed]  [PMC]
  44. Velioglu HA, Hanoglu L, Bayraktaroglu Z, et al. Left lateral parietal rTMS improves cognition and modulates resting brain connectivity in patients with Alzheimer's disease: Possible role of BDNF and oxidative stress. Neurobiol Learn Mem. 2021;180. [Crossref]  [PubMed]
  45. Wei L, Zhang Y, Wang J, et al. Parietalhippocampal rTMS improves cognitive function in Alzheimer's disease and increases dynamic functional connectivity of default mode network. Psychiatry Res. 2022;315. [Crossref]  [PubMed]
  46. Jung YH, Jang H, Park S, et al. Effectiveness of Personalized Hippocampal NetworkTargeted Stimulation in Alzheimer Disease: A Randomized Clinical Trial. JAMA Netw Open. 2024;7(5):E249220. [Crossref]  [PubMed]  [PMC]
  47. Yao Q, Tang F, Wang Y, et al. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: A randomized clinical trial. Brain Stimul. 2022;15(4):910920. [Crossref]  [PubMed]
  48. Koch G, Casula EP, Bonnì S, et al. Precuneus magnetic stimulation for Alzheimer's disease: a randomized, shamcontrolled trial. Brain. 2022;145(11):37763786. [Crossref]  [PubMed]  [PMC]
  49. Wu X, Ji GJ, Geng Z, et al. Accelerated intermittent thetaburst stimulation broadly ameliorates symptoms and cognition in Alzheimer's disease: A randomized controlled trial. Brain Stimul. 2022;15(1):3545. [Crossref]  [PubMed]
  50. Hoy KE, Emonson MRL, Bailey NW, et al. Gamma connectivity predicts response to intermittent theta burst stimulation in Alzheimer's disease: a randomized controlled trial. Neurobiol Aging. 2023;132:1323. [Crossref]  [PubMed]
  51. Lin H, Liang J, Wang Q, et al. Effects of accelerated intermittent thetaburst stimulation in modulating brain of Alzheimer's disease. Cereb Cortex. 2024;34(3). [Crossref]  [PubMed]
  52. Jin Y, Li J, Xiao B. Efficacy and safety of neuromodulation for apathy in patients with Alzheimer's disease: A systematic review and metaanalysis of randomized controlled trials. J Psychiatr Res. 2024;171:1724. [Crossref]  [PubMed]
  53. Wu Y, Xu W, Liu X, Xu Q, Tang L, Wu S. Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer's disease: a randomized, doubleblind, shamcontrolled study. Shanghai Arch Psychiatry. 2015;27(5):280288.
  54. Xu P, Chen A, Li Y, Xing X, Lu H. Medial prefrontal cortex in neurological diseases. Physiol Genomics. 2019;51(9):432. [Crossref]  [PubMed]  [PMC]
  55. Kayasandik CB, Velioglu HA, Hanoglu L. Predicting the Effects of Repetitive Transcranial Magnetic Stimulation on Cognitive Functions in Patients With Alzheimer's Disease by Automated EEG Analysis. Front Cell Neurosci. 2022;16. [Crossref]  [PubMed]  [PMC]
  56. Cash RFH, Zalesky A. Personalized and CircuitBased Transcranial Magnetic Stimulation: Evidence, Controversies, and Opportunities. Biol Psychiatry. 2024;95(6):510522. [Crossref]  [PubMed]
  57. Hanoglu L, Velioglu HA, Hanoglu T, Yulug B. NeuroimagingGuided Transcranial Magnetic and Direct Current Stimulation in MCI: Toward an Individual, Effective and DiseaseModifying Treatment. Clin EEG Neurosci. 2023;54(1):8290. [Crossref]  [PubMed]
  58. Li X, Liu J, Wei S, et al. Cognitive enhancing effect of rTMS combined with tDCS in patients with major depressive disorder: a doubleblind, randomized, shamcontrolled study. BMC Med. 2024;22(1). [Crossref]  [PubMed]  [PMC]
  59. Kimura I, Oishi H, Hayashi MJ, Amano K. Microstructural Properties of Human Brain Revealed by Fractional Anisotropy Can Predict the AfterEffect of Intermittent Theta Burst Stimulation. Cereb Cortex Commun. 2021;3(1). [Crossref]  [PubMed]  [PMC]
  60. Zandvakili A, Philip NS, Jones SR, Tyrka AR, Greenberg BD, Carpenter LL. Use of Machine Learning in Predicting Clinical Response to Transcranial Magnetic Stimulation in comorbid Posttraumatic Stress Disorder and Major Depression: A Resting State Electroencephalography Study. J Affect Disord. 2019;252:47. [Crossref]  [PubMed]  [PMC]
  61. Sun W, Wu Q, Gao L, et al. Advancements in Transcranial Magnetic Stimulation Research and the Path to Precision. Neuropsychiatr Dis Treat. 2023;19:1841. [Crossref]  [PubMed]  [PMC]