Treatment Options for Resistant Gram-Positive Organisms in Children

Selim ÖNCELa , Özgür BORAKAYa

aKocaeli University Faculty of Medicine, Division of Pediatric Infectious Diseases, Kocaeli, Türkiye

ABSTRACT

Several gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and penicillin-resistant Streptococcus pneumoniae, have developed resistance to commonly used antibiotics. This resistance is due to mechanisms such as target site alteration, enzymatic inactivation, efflux pumps, biofilm formation, and horizontal gene transfer. Children have a reduced immune response functionality which can compromise the efficacy of antibiotics. Additionally, they are susceptible to a unique spectrum of infections compared to adults. To combat resistant gram-positive organisms, antimicrobials such as glycopeptides, daptomycin, oxazolidinones, glycylcyclines, newer cephalosporins, and flucloxacillin can be used. Treating pediatric patients poses several challenges, including the availability of appropriate antibiotic formulations, poor palatability, and difficulties in administering medication. To manage these resistant organisms, it is crucial to implement vaccination, infection control measures, and antimicrobial stewardship. Novel antibiotics, bacteriophage therapy, antimicrobial peptides, immunotherapy, and personalized medicine offer promising approaches.

Keywords: Drug resistance, microbial; precision medicine; gram-positive bacterial infections; drug resistance, multiple, bacterial

Referanslar

  1. Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, Mullin N, et al. The architecture of the Gram-positive bacterial cell wall. Nature. 2020;582(7811):294-7. [Crossref]
  2. Fritz SA, Garbutt J, Elward A, Shannon W, Storch GA. Prevalence of and risk factors for community-acquired methicillin-resistant and methicillin-sensitive staphylococcus aureus colonization in children seen in a practice-based research network. Pediatrics. 2008;121(6):1090-8. [Crossref]
  3. Adams DJ, Eberly MD, Goudie A, Nylund CM. Rising Vancomycin-Resistant Enterococcus Infections in Hospitalized Children in the United States. Hosp Pediatr. 2016;6(7):404-11. [Crossref]
  4. Farhadi R, Saffar MJ, Monfared FT, Larijani LV, Kenari SA, Charati JY. Prevalence, risk factors, and molecular analysis of vancomycin-resistant Enterococci colonization in a referral neonatal intensive care unit: a prospective study in northern Iran. J Glob Antimicrob Resist. 2022;30:474-9. [Crossref]
  5. de Oliveira Santos JV, da Costa Júnior SD, de Fátima Ramos Dos Santos Medeiros SM, Cavalcanti IDL, de Souza JB, Coriolano DL, et al. Panorama of Bacterial Infections Caused by Epidemic Resistant Strains. Curr Microbiol. 2022;79(6):175. [Crossref]
  6. Matthews PC. Infections caused by gram-positive bacteria. In: Matthews PC, Matthews PC, eds. Tropical Medicine Notebook. Oxford University Press; 2017. [Crossref]
  7. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325(5944):1089-93. [Crossref]
  8. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7(9):629-41. [Crossref]
  9. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995;39(3):577-85. [Crossref]
  10. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969-76. [Crossref]
  11. Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42 Suppl 1:S25-34. [Crossref]
  12. Lekshmi M, Stephen J, Ojha M, Kumar S, Varela M. Staphylococcus aureus antimicrobial efflux pumps and their inhibitors: recent developments. AIMS Med Sci. 2022;9(3):367-93. [Crossref]
  13. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167-93. [Crossref]
  14. Bradley JS, Byington CL, Shah SS, Alverson B, Carter ER, Harrison C, et al. Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis. 2011;53(7):e25-76. [Crossref]
  15. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157-67. [Crossref]
  16. Anderson BJ. Pharmacokinetics and pharmacodynamics in the pediatric patient. In: Absalom AR, Mason KP, eds. Total Intravenous Anesthesia and Target Controlled Infusions: A Comprehensive Global Anthology. Springer International Publishing; 2017. p. 441-516. [Crossref]
  17. van den Anker JN. Pharmacokinetics and renal function in preterm infants. Acta Paediatr Oslo Nor 1992. 1996;85(12):1393-9. [Crossref]
  18. Siegrist CA. Neonatal and early life vaccinology. Vaccine. 2001;19(25-26):3331-46. [Crossref]
  19. Bradley JS, Scheld WM. The challenge of penicillin-resistant Streptococcus pneumoniae meningitis: current antibiotic therapy in the 1990s. Clin Infect Dis. 1997;24 Suppl 2:S213-21. [Crossref]
  20. Nahata MC. Lack of pediatric drug formulations. Pediatrics. 1999;104(3 Pt 2):607-9. [Crossref]
  21. Sturkenboom MC, Verhamme KM, Nicolosi A, Murray ML, Neubert A, Caudri D, et al. TEDDY European Network of Excellence. Drug use in children: cohort study in three European countries. BMJ. 2008;337:a2245. [Crossref]
  22. Principi N, Esposito S. Antimicrobial stewardship in paediatrics. BMC Infect Dis. 2016;16(1):424. [Crossref]
  23. McGowan JE Jr. Economic impact of antimicrobial resistance. Emerg Infect Dis. 2001;7(2):286-92. [Crossref]
  24. Svetitsky S, Leibovici L, Paul M. Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother. 2009;53(10):4069-79. [Crossref]
  25. Sosio M, Donadio S. Understanding and manipulating glycopeptide pathways: the example of the dalbavancin precursor A40926. J Ind Microbiol Biotechnol. 2006;33(7):569-76. [Crossref]
  26. Polyzos KA, Mavros MN, Vardakas KZ, Makris MC, Rafailidis PI, Falagas ME. Efficacy and safety of telavancin in clinical trials: a systematic review and meta-analysis. PLoS One. 2012;7(8):e41870. [Crossref]
  27. Heidary M, Khosravi AD, Khoshnood S, Nasiri MJ, Soleimani S, Goudarzi M. Daptomycin. J Antimicrob Chemother. 2018;73(1):1-11. [Crossref]
  28. Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother. 2022;77(10):2596-621. [Crossref]
  29. Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, et al. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis. 2022;41(7):1003-22. [Crossref]
  30. Esposito S, Carrothers TJ, Riccobene T, Stone GG, Kantecki M. Ceftaroline Fosamil for Treatment of Pediatric Complicated Skin and Soft Tissue Infections and Community-Acquired Pneumonia. Paediatr Drugs. 2021;23(6):549-63. [Crossref]
  31. Horner C, Mushtaq S, Livermore DM; BSAC Resistance Surveillance Standing Committee. Activity of ceftaroline versus ceftobiprole against staphylococci and pneumococci in the UK and Ireland: analysis of BSAC surveillance data. J Antimicrob Chemother. 2020;75(11):3239-43. [Crossref]
  32. Jager NGL, van Hest RM, Xie J, Wong G, Ulldemolins M, Brüggemann RJM, et al. Optimization of flucloxacillin dosing regimens in critically ill patients using population pharmacokinetic modelling of total and unbound concentrations. J Antimicrob Chemother. 2020;75(9):2641-9. [Crossref]
  33. Saravolatz LD, Stein GE, Johnson LB. Ceftaroline: a novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2011;52(9):1156-63. [Crossref]
  34. Mendes RE, Deshpande LM, Jones RN. Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat. 2014;17(1-2):1-12. [Crossref]
  35. Sader HS, Fritsche TR, Jones RN. Potency and bactericidal activity of iclaprim against recent clinical gram-positive isolates. Antimicrob Agents Chemother. 2009;53(5):2171-5. [Crossref]
  36. Cai Y, Wang R, Liang B, Bai N, Liu Y. Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious disease. Antimicrob Agents Chemother. 2011;55(3):1162-72. [Crossref]
  37. Allington DR, Rivey MP. Quinupristin/dalfopristin: a therapeutic review. Clin Ther. 2001;23(1):24-44. [Crossref]
  38. Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77(11):835-64. [Crossref]
  39. Le J, Bradley JS, Hingtgen S, Skochko S, Black N, Jones RN, Let al Pharmacokinetics of single-dose ceftaroline fosamil in children with cystic fibrosis. Pediatr Pulmonol. 2017;52(11):1424-34. [Crossref]
  40. Schuch R, Lee HM, Schneider BC, Sauve KL, Law C, Khan BK, et al. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis. 2014;209(9):1469-78. [Crossref]
  41. Pfaller MA, Huband MD, Shortridge D, Flamm RK. Surveillance of omadacycline activity tested against clinical isolates from the USA: report from the SENTRY Antimicrobial Surveillance Program, 2019. J Glob Antimicrob Resist. 2021;27:337-51. [Crossref]
  42. Buege MJ, Brown JE, Aitken SL. Solithromycin: A novel ketolide antibiotic. Am J Health Syst Pharm. 2017;74(12):875-87. [Crossref]
  43. Saravolatz LD, Stein GE. Delafloxacin: A New Anti-methicillin-resistant Staphylococcus aureus Fluoroquinolone. Clin Infect Dis. 2019;68(6):1058-62. [Crossref]
  44. Li HK, Rombach I, Zambellas R, Walker AS, McNally MA, Atkins BL, et al. OVIVA Trial Collaborators. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N Engl J Med. 2019;380(5):425-36. [Crossref]
  45. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother. 2017;61(10): e00954-17. [Crossref]
  46. Braff MH, Gallo RL. Antimicrobial peptides: an essential component of the skin defensive barrier. Curr Top Microbiol Immunol. 2006;306:91-110. [Crossref]
  47. Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, et al. MODIFY I and MODIFY II Investigators. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N Engl J Med. 2017;376(4):305-17. [Crossref]
  48. WHO guidelines on hand hygiene in health care. Accessed February 25, 2024. [Link]
  49. Siegel JD, Rhinehart E, Jackson M, Chiarello L; Healthcare Infection Control Practices Advisory Committee. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control. 2007;35(10 Suppl 2):S165-93. [Crossref]
  50. Dellit TH, Owens RC, McGowan JE Jr, Gerding DN, Weinstein RA, Burke JP, et al. Infectious Diseases Society of America; Society for Healthcare Epidemiology of America. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44(2):159-77. [Crossref]
  51. Hersh AL, Jackson MA, Hicks LA; American Academy of Pediatrics Committee on Infectious Diseases. Principles of judicious antibiotic prescribing for upper respiratory tract infections in pediatrics. Pediatrics. 2013;132(6):1146-54. [Crossref]
  52. Kallen AJ, Mu Y, Bulens S, Reingold A, Petit S, Gershman K, et al. Active Bacterial Core surveillance (ABCs) MRSA Investigators of the Emerging Infections Program. Health care-associated invasive MRSA infections, 2005-2008. JAMA. 2010;304(6):641-8. [Crossref]
  53. Gerber JS, Prasad PA, Fiks AG, Localio AR, Grundmeier RW, Bell LM, et al. Effect of an outpatient antimicrobial stewardship intervention on broad-spectrum antibiotic prescribing by primary care pediatricians: a randomized trial. JAMA. 2013;309(22):2345-52. [Crossref]
  54. Moser C, Lerche CJ, Thomsen K, Hartvig T, Schierbeck J, Jensen PØ, et al. Antibiotic therapy as personalized medicine - general considerations and complicating factors. APMIS. 2019;127(5):361-71. [Crossref]
  55. Rückinger S, van der Linden M, Reinert RR, von Kries R, Burckhardt F, Siedler A. Reduction in the incidence of invasive pneumococcal disease after general vaccination with 7-valent pneumococcal conjugate vaccine in Germany. Vaccine. 2009;27(31):4136-41. [Crossref]
  56. Fowler VG Jr, Proctor RA. Where does a Staphylococcus aureus vaccine stand? Clin Microbiol Infect. 2014;20 Suppl 5(0 5):66-75. [Crossref]
  57. Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH, Bennett NM, et al. Active Bacterial Core Surveillance/Emerging Infections Program Network. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis. 2010;201(1):32-41. [Crossref]