Tükürük Biyokimyası

oral-biyokimya

Zerrin Barut

Tükürük; farklı proteinlerle zenginleştirilmiş kompleks bir bileşendir ve bu bileşen ağız içi mikrobiyotanın kontrolünde kritik rol oynar. Bu bölüm, tükürük bezlerinin temel yapısal ögelerine, tükürüğün yapı ve fonksiyonlarına ve tükürük içerisindeki proteinlere odaklanmaktadır. Tükürük bezlerinin ana yapısal ögeleri, bu bezlerin salgı üretimi ve bunun organizmanın genel işleyişi üzerindeki etkilerine değinmektedir. Tükürüğün bu çok önemli işlevi, ağız hijyeninin yanı sıra ağız içi ekosisteminin dengesini sağlamada da önemlidir. Bu bölümde ayrıca, tükürükte bulunan mukus proteinlerinin ve proteoglikanların ayrıntılı bir incelemesi ile ilişkileri de irdelenmekte, tükürük amilazı, prolin-zengin proteinler ve tükürük aglütinini gibi tükürük bileşenlerinin yapıları ve işleyişleri derinlemesine incelenmektedir. Ayrıntılı olarak ele alınan bu konular, ağız dokularında tükürüğün etkisi ile ilgili kapsamlı bir bakış sunar.

Referanslar

  1. Abrão, A. L. P., Leal, S. C., & Falcão, D. P. (2014). Salivary and serum cortisol levels, salivary alpha-amylase and unstimulated whole saliva flow rate in pregnant and non-pregnant. Revista Brasileira de Ginecologia e Obstetrícia, 36, 72-78.
  2. Ali, N., & Nater, U. M. (2020). Salivary alpha-amylase as a biomarker of stress in behavioral medicine. Inter-national journal of behavioral medicine, 27, 337-342.
  3. Antequera, D., Moneo, D., Carrero, L., Bartolome, F., Ferrer, I., Proctor, G., & Carro, E. (2021). Salivary lacto-ferrin expression in a mouse model of Alzheimer’s disease. Frontiers in Immunology, 12, 749468.
  4. Balan, P., Chong, Y. S., Umashankar, S., Swarup, S., Loke, W. M., Lopez, V., ... & Seneviratne, C. J. (2018). Keystone species in pregnancy gingivitis: a snapshot of oral microbiome during pregnancy and postpartum period. Frontiers in microbiology, 9, 2360.
  5. Bardow, A., Madsen, J., & Nauntofte, B. (2000). The bicarbonate concentration in human saliva does not exce-ed the plasma level under normal physiological conditions. Clinical oral investigations, 4, 245-253.
  6. Blakeley, M., Sobczyńska-Malefora, A., & Carpenter, G. (2020). The origins of salivary vitamin A, vitamin B12 and vitamin D-binding Proteins. Nutrients, 12(12), 3838.
  7. Blanco, A., & Blanco, G. (2017). Medical biochemistry. Academic Press.
  8. Bosch, J. A., & Carroll, D. (2007). Mucosal Secretory Immunity, Stress and.
  9. Bronshtein, M., Gover, A., Beloosesky, R., Dabaja, H., Ginsberg, Y., Weiner, Z., & Khatib, N. (2018). Charac-teristics and Outcomes of Ptyalism Gravidarum. The Israel Medical Association Journal: IMAJ, 20(9), 573-575.
  10. Brysk, M. M., Lei, G., Rajaraman, S., Selvanayagam, P., Rassekh, C. H., Brysk, H., ... & Arany, I. (1997). Gene expression of zinc-alpha 2-glycoprotein in normal human epidermal and buccal epithelia. In Vivo (Athens, Greece), 11(3), 271-274.
  11. Campbell, C. M. P., Giuliano, A. R., Torres, B. N., O’Keefe, M. T., Ingles, D. J., Anderson, R. L., ... & Gapstur, S. M. (2016). Salivary secretory leukocyte protease inhibitor (SLPI) and head and neck cancer: The Cancer Prevention Study II Nutrition Cohort. Oral oncology, 55, 1-5.
  12. Carlson, D. M. (1993). Salivary proline-rich proteins: biochemistry, molecular biology, and regulation of exp-ression. Critical Reviews in Oral Biology & Medicine, 4(3), 495-502.
  13. Carpenter, G. H. (2013). The secretion, components, and properties of saliva. Annual review of food science and technology, 4, 267-276.
  14. Chan, M., & Bennick, A. (2001). Proteolytic processing of a human salivary proline-rich protein precursor by proprotein convertases. European Journal of Biochemistry, 268(12), 3423-3431.
  15. Chiappin, S., Antonelli, G., Gatti, R., & Elio, F. (2007). Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clinica chimica acta, 383(1-2), 30-40.
  16. Chong, P. H., He, Q., Rao, P., Li, L., & Ke, L. (2021). The interindividual variation of salivary flow rate and biochemistry in healthy adults: Influence of black tea consumption. Journal of Functional Foods, 82, 104516.
  17. Courtois, P. (2021). Oral peroxidases: From antimicrobial agents to ecological actors. Molecular Medicine Reports, 24(1), 1-12.
  18. Dawes, C. (2003). What is the critical pH and why does a tooth dissolve in acid?. Journal-Canadian Dental Association, 69(11), 722-725.
  19. Dawes, C., Pedersen, A. L., Villa, A., Ekström, J., Proctor, G. B., Vissink, A., ... & Wolff, A. (2015). The fun-ctions of human saliva: A review sponsored by the World Workshop on Oral Medicine VI. Archives of oral biology, 60(6), 863-874.
  20. Dawes, C., Pedersen, A. L., Villa, A., Ekström, J., Proctor, G. B., Vissink, A., ... & Wolff, A. (2015). The fun-ctions of human saliva: A review sponsored by the World Workshop on Oral Medicine VI. Archives of oral biology, 60(6), 863-874.
  21. Fábián, T. K., Hermann, P., Beck, A., Fejérdy, P., & Fábián, G. (2012). Salivary defense proteins: their network and role in innate and acquired oral immunity. International journal of molecular sciences, 13(4), 4295-4320.
  22. Feng, G., Zhao, J., Peng, J., Luo, B., Zhang, J., Chen, L., & Xu, Z. (2022). Circadian clock—A promising scientific target in oral science. Frontiers in Physiology, 2388.
  23. FenolI-Palomares, C., Muñoz-Montagud, J. V., Sanchiz, V., Herreros, B., Hernández, V., Mínguez, M., & Bena-ges, A. (2004). Unstimulated salivary flow rate, pH and buffer capacity of saliva in healthy volunteers. Revista espanola de enfermedades digestivas, 96(11), 773-783.
  24. Frenkel, E. S., & Ribbeck, K. (2015). Salivary mucins protect surfaces from colonization by cariogenic bacte-ria. Applied and environmental microbiology, 81(1), 332-338.
  25. Gibbins, H. L., & Carpenter, G. H. (2013). Alternative mechanisms of astringency–what is the role of saliva?. Journal of Texture Studies, 44(5), 364-375.
  26. González-Sánchez, M., Bartolome, F., Antequera, D., Puertas-Martín, V., González, P., Gómez-Grande, A., ... & Carro, E. (2020). Decreased salivary lactoferrin levels are specific to Alzheimer’s disease. EBioMedicine, 57.
  27. Gröschl, M. (2009). The physiological role of hormones in saliva. Bioessays, 31(8), 843-852.
  28. Gunput, S. T., Wouters, D., Nazmi, K., Cukkemane, N., Brouwer, M., Veerman, E. C., & Ligtenberg, A. J.(2016). Salivary agglutinin is the major component in human saliva that modulates the lectin pathway of the complement system. Innate Immunity, 22(4), 257-265.
  29. Hajishengallis, G., & Russell, M. W. (2015). Innate humoral defense factors. In Mucosal immunology (pp. 251-270). Academic Press.
  30. Hajishengallis, G., & Russell, M. W. (2015). Innate humoral defense factors. In Mucosal immunology (pp. 251-270). Academic Press.
  31. Hassan, M. I., Bilgrami, S., Kumar, V., Singh, N., Yadav, S., Kaur, P., & Singh, T. P. (2008). Crystal structure of the novel complex formed between zinc α2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. Journal of molecular biology, 384(3), 663-672.
  32. Hay, D. I., Bennick, A., Schlesinger, D. H., Minaguchi, K., Madapallimattam, G., & Schluckebier, S. K. (1988). The primary structures of six human salivary acidic proline-rich proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f). Biochemical Journal, 255(1), 15-21.
  33. Hensten, A., & Jacobsen, N. (2019). Salivary alpha amylase as a stress biomarker. OSP J Dent Sci, 1(1), 1-6.
  34. Hoseini, A., Mirzapour, A., Bijani, A., & Shirzad, A. (2017). Salivary flow rate and xerostomia in patients with type I and II diabetes mellitus. Electronic physician, 9(9), 5244.
  35. Hoseini, A., Mirzapour, A., Bijani, A., & Shirzad, A. (2017). Salivary flow rate and xerostomia in patients with type I and II diabetes mellitus. Electronic physician, 9(9), 5244.
  36. Humphrey, S. P., & Williamson, R. T. (2001). A review of saliva: normal composition, flow, and function. The Journal of prosthetic dentistry, 85(2), 162-169.
  37. Humphrey, S. P., & Williamson, R. T. (2001). A review of saliva: normal composition, flow, and function. The Journal of prosthetic dentistry, 85(2), 162-169.
  38. Humphrey, S. P., & Williamson, R. T. (2001). A review of saliva: normal composition, flow, and function. The Journal of prosthetic dentistry, 85(2), 162-169.
  39. Iorgulescu, G. (2009). Saliva between normal and pathological. Important factors in determining systemic and oral health. Journal of medicine and life, 2(3), 303.
  40. Jang, H., Patoine, A., Wu, T. T., Castillo, D. A., & Xiao, J. (2021). Oral microflora and pregnancy: A systematic review and meta-analysis. Scientific reports, 11(1), 16870.
  41. Jiang, L., Li, Y., Wang, L., Guo, J., Liu, W., Meng, G., ... & Sun, M. (2021). Recent insights into the prognostic and therapeutic applications of lysozymes. Frontiers in Pharmacology, 12, 767642.
  42. Kaplan, M. D., & Baum, B. J. (1993). The functions of saliva. Dysphagia, 8, 225-229.
  43. Khandelwal, A., & Palanivelu, A. (2019). Correlation between dental caries and salivary albumin in adult po-pulation in Chennai: An in vivo study. Brazilian Dental Science, 22(2), 228-233. Koduru, M. R., Ramesh, A., Adapa, S., & Shetty, J. (2017). Salivary albumin as a biomarker for oral squamous cell carcinoma and chronic periodontitis. Ann. Med. Health Sci. Res, 7, 337-340.
  44. Koduru, M. R., Ramesh, A., Adapa, S., & Shetty, J. (2017). Salivary albumin as a biomarker for oral squamous cell carcinoma and chronic periodontitis. Ann. Med. Health Sci. Res, 7, 337-340.
  45. Kulkarni, B. V., & Mattes, R. D. (2014). Lingual lipase activity in the orosensory detection of fat by humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 306(12), R879-R885.
  46. Lamy, E., Morzel, M., Rodrigues, L., Pinheiro, C., Costa, A. R., Antunes, C. M., ... & e Silva, F. C. (2015). The use of electrophoresis for the study of saliva involvement in ingestive behavior. In Field Effect Electroos-mosis-A Novel Phenomenon in Electrokinetics and its Applications in Capillary Electrophoresis. IntechOpen. Laputková, G., Schwartzová, V., Bánov􀀂in, J., Alexovi􀀂, M., & Sabo, J. (2018). Salivary protein roles in oral health and as predictors of caries risk. Open life sciences, 13(1), 174-200.
  47. Levine, M. (2010). Topics in dental biochemistry. Springer Science & Business Media.
  48. Lieske, B., Makarova, N., Jagemann, B., Walther, C., Ebinghaus, M., Zyriax, B. C., & Aarabi, G. (2022). Inf-lammatory Response in Oral Biofilm during Pregnancy: A Systematic Review. Nutrients, 14(22), 4894.
  49. Loo, J. A., Yan, W., Ramachandran, P., & Wong, D. T. (2010). Comparative human salivary and plasma prote-omes. Journal of dental research, 89(10), 1016-1023.
  50. Marcotte, H., & Lavoie, M. C. (1998). Oral microbial ecology and the role of salivary immunoglobulin A. Microbiology and molecular biology reviews, 62(1), 71-109.
  51. Mass, E., Wolff, Ä., & Gadoth, N. (1996). Increased major salivary gland secretion in familial dysautonomia. Developmental Medicine & Child Neurology, 38(2), 133-138.
  52. Meurman, J. H., Rantonen, P., Pajukoski, H., & Sulkava, R. (2002). Salivary albumin and other constituents and their relation to oral and general health in the elderly. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 94(4), 432-438.
  53. Minetor, R. (2019). Medical Tests in Context: Innovations and Insights. Bloomsbury Publishing USA.
  54. Ntovas, P., Loumprinis, N., Maniatakos, P., Margaritidi, L., & Rahiotis, C. (2022). The effects of physical exer-cise on saliva composition: a comprehensive review. Dentistry journal, 10(1), 7.
  55. Patrikainen, M., Pan, P., Kulesskaya, N., Voikar, V., & Parkkila, S. (2014). The role of carbonic anhydrase VI in bitter taste perception: evidence from the Car6−/− mouse model. Journal of biomedical science, 21(1), 1-7.
  56. Pedersen, A. M. L., Sørensen, C. E., Proctor, G. B., & Carpenter, G. H. (2018). Salivary functions in masticati-on, taste and textural perception, swallowing and initial digestion. Oral diseases, 24(8), 1399-1416.
  57. Pedersen, A. M. L., Sørensen, C. E., Proctor, G. B., Carpenter, G. H., & Ekström, J. (2018). Salivary secretion in health and disease. Journal of oral rehabilitation, 45(9), 730-746.
  58. Peyrot des Gachons, C., & Breslin, P. A. (2016). Salivary amylase: digestion and metabolic syndrome. Current diabetes reports, 16, 1-7.
  59. Piludu, M., Rayment, S. A., Liu, B., Offner, G. D., Oppenheim, F. G., Troxler, R. F., & Hand, A. R. (2003).
  60. Electron microscopic immunogold localization of salivary mucins MG1 and MG2 in human submandibular and sublingual glands. Journal of Histochemistry & Cytochemistry, 51(1), 69-79.
  61. Prakobphol, A., Xu, F., Hoang, V. M., Larsson, T., Bergstrom, J., Johansson, I., ... & Fisher, S. J. (2000). Salivary agglutinin, which binds streptococcus mutansand helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340. Journal of Biological Chemistry, 275(51), 39860-39866.
  62. Proctor, G. B. (2016). The physiology of salivary secretion. Periodontology 2000, 70(1), 11-25.
  63. Rabiei, M., Asli, H. N., & Mohamadi, M. H. (2019). Comparison of salivary calcium level in dentulous and edentulous patients. European journal of dentistry, 13(01), 036-041.
  64. Rio, R., Azevedo, Á., Simões-Silva, L., Marinho, J., Silva, M. J., & Sampaio-Maia, B. (2015). The bioche-mistry of saliva throughout pregnancy. MedicalExpress, 2. Rio, R., Azevedo, Á., Simões-Silva, L., Marinho, J., Silva, M. J., & Sampaio-Maia, B. (2015). The bioche-mistry of saliva throughout pregnancy. MedicalExpress, 2.
  65. Rio, R., Azevedo, Á., Simões-Silva, L., Marinho, J., Silva, M. J., & Sampaio-Maia, B. (2015). The bioche-mistry of saliva throughout pregnancy. MedicalExpress, 2.
  66. Saadaoui, M., Singh, P., & Al Khodor, S. (2021). Oral microbiome and pregnancy: A bidirectional relationship. Journal of reproductive immunology, 145, 103293.
  67. Salvolini, E., Di Giorgio, R., Curatola, A., Mazzanti, L., & Fratto, G. (1998). Biochemical modifications of human whole saliva induced by pregnancy. BJOG: An International Journal of Obstetrics & Gynaecology, 105(6), 656-660.
  68. Schenkels, L. C., Veerman, E. C., & Nieuw Amerongen, A. V. (1995). Biochemical composition of human sali-va in relation to other mucosal fluids. Critical reviews in oral biology & medicine, 6(2), 161-175.
  69. Schenkels, L. C., Veerman, E. C., & Nieuw Amerongen, A. V. (1995). Biochemical composition of human sali-va in relation to other mucosal fluids. Critical reviews in oral biology & medicine, 6(2), 161-175.
  70. Selviani, Y., Masâ, N. W., Fitri, A. N., Ferry, A. B., Lestari, R. F., & Samad, R. (2016). Inorganic component of saliva during fasting and after fast break. Journal of Dentomaxillofacial Science, 1(2), 125-128.
  71. Slomiany, B. L., Murty, V. L. N., Piotrowski, J., & Slomiany, A. (1996). Salivary mucins in oral mucosal defen-se. General Pharmacology: The Vascular System, 27(5), 761-771.
  72. Soell, M., Feki, A., Hannig, M., Sano, H., Pinget, M., & Selimović, D. (2010). Chromogranin a detection in saliva of τυρε 2 diabetes patients. Bosnian journal of basic medical sciences, 10(1), 2.
  73. Sun, H., Chen, Y., Zou, X., Li, Q., Li, H., Shu, Y., ... & Ge, C. (2016). Salivary secretory immunoglobulin (SIgA) and lysozyme in malignant tumor patients. BioMed Research International, 2016.
  74. Suzuki, S., Igarashi, M., Yamashita, E., & Satomi, M. (2009). Ptyalism gravidarum. North American Journal of Medical Sciences, 1(6), 303.
  75. Takano, T., Wahl, A. M., Huang, K. T., Narita, T., Rugis, J., Sneyd, J., & Yule, D. I. (2021). Highly localized intracellular Ca2+ signals promote optimal salivary gland fluid secretion. Elife, 10, e66170.
  76. Thatcher, B. J., Doherty, A. E., Orvisky, E., Martin, B. M., & Henkin, R. I. (1998). Gustin from human parotid saliva is carbonic anhydrase VI. Biochemical and biophysical research communications, 250(3), 635-641.
  77. Tiwari, M. (2011). Science behind human saliva. Journal of natural science, biology, and medicine, 2(1), 53.
  78. Troxler, R. F., Iontcheva, I., Oppenheim, F. G., Nunes, D. P., & Offner, G. D. (1997). Molecular characterization of a major high molecular weight mucin from human sublingual gland. Glycobiology, 7(7), 965-973.
  79. Umeki, H., Tokuyama, R., Ide, S., Okubo, M., Tadokoro, S., Tezuka, M., ... & Satomura, K. (2014). Leptin promotes wound healing in the oral mucosa. PLoS One, 9(7), e101984.
  80. Valstar, M. H., de Bakker, B. S., Steenbakkers, R. J., de Jong, K. H., Smit, L. A., Nulent, T. J. K., ... & Vogel, W. V. (2021). The tubarial salivary glands: A potential new organ at risk for radiotherapy. Radiotherapy and Oncology, 154, 292-298.
  81. Varga, G., Kerémi, B., Bori, E., & Földes, A. (2015). Function and repair of dental enamel–Potential role of epithelial transport processes of ameloblasts. Pancreatology, 15(4), S55-S60.
  82. Vila, T., Rizk, A. M., Sultan, A. S., & Jabra-Rizk, M. A. (2019). The power of saliva: Antimicrobial and beyond. PLoS pathogens, 15(11), e1008058.
  83. Villa, A., Connell, C. L., & Abati, S. (2014). Diagnosis and management of xerostomia and hyposalivation. Therapeutics and clinical risk management, 45-51.
  84. Yoshida, Y., Wang, Z., Tehrani, K. F., Pendleton, E. G., Tanaka, R., Mortensen, L. J., ... & Kawabata, F. (2019). Bitter taste receptor T2R7 and umami taste receptor subunit T1R1 are expressed highly in Vimentin-negative taste bud cells in chickens. Biochemical and Biophysical Research Communications, 511(2), 280-286.
  85. Yousefi, M., Parvaie, P., & Riahi, S. M. (2020). Salivary factors related to caries in pregnancy: A systematic review and meta-analysis. The Journal of the American Dental Association, 151(8), 576-588. Zhang, Y., Kim, S. O., Opsahl-Vital, S., Ho, S. P., Souron, J. B., Kim, C., ... & Den Besten, P. K. (2011). Mul-tiple effects of the cellular prion protein on tooth development. International Journal of Developmental Biology, 55(10), 953.
  86. Żukowski, P., Maciejczyk, M., & Waszkiel, D. (2018). Sources of free radicals and oxidative stress in the oral cavity. Archives of Oral Biology, 92, 8-17.