Tumor Immunology

Hamdullah YANIKa , Güneş ESENDAĞLIa
aHacettepe University Cancer Institute, Department of Basic Oncology, Ankara, Türkiye

Yanık H, Esendağlı G. Tumor immunology. Sunguroğlu A, ed. Current Approaches in Cancer Immunotherapy. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.1-6.

ABSTRACT
Immunosurveillance is an essential mechanism for the defense against cancer wherein the immune system identifies and eliminates tumor cells. This process involves a complex interplay between the elements of innate and adaptive immunity. A network of various immune cells and effector molecules integrate to exploit anti-tumor responses. On the other hand, recent studies indicated two-faced functions of the immune system since inflammation can also drive tumorigenesis. Alterations in the tumor microenvironment reminiscent of wound healing and immune modulation pave the way for cancer progression. Moreover, tumor cells which avoid immune recognition and survive the anti-tumor immune reactions evolve are consequences of cancer immunoediting; these processes form the basis of immune escape phase of tumor immunology. Understanding the dynamics of immunity against cancer is essential for rational design of immunotherapy approaches which aim the restoration of anti-tumor responses. This chapter focuses on the basic concepts of tumor immunology and the impact of immune modulation in cancer.

Keywords: Immunotherapy; adaptive immunity; immunity, innate; inflammation

Referanslar

  1. Maiorino L, Daßler-Plenker J, Sun L, Egeblad M. Innate Immunity and Cancer Pathophysiology. Annu Rev Pathol. 2022;17:425-57. Epub 20211117. [Crossref]  [PubMed]  [PMC]
  2. Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016;35(46):5931-41. [Crossref]  [PubMed]  [PMC]
  3. Krysko O, Løve Aaes T, Bachert C, Vandenabeele P, Krysko DV. Many faces of DAMPs in cancer therapy. Cell Death Dis. 2013;4(5):e631. Epub 20130516. [Crossref]  [PubMed]  [PMC]
  4. Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26(3-4):152-62. Epub 20210313. [Crossref]  [PubMed]  [PMC]
  5. Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nature Immunology. 2022;23(4):487-500. [Crossref]
  6. Lee SM, Kim P, You J, Kim EH. Role of Damage-Associated Molecular Pattern/Cell Death Pathways in Vaccine-Induced Immunity. Viruses. 2021;13(12). Epub 20211123. [Crossref]  [PubMed]  [PMC]
  7. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduction and Targeted Therapy. 2021;6(1):291. [Crossref]  [PubMed]  [PMC]
  8. Zhao Q, Wang Q, Wang T, Xu J, Li T, Liu Q, et al. Pattern Recognition Receptors (PRRs) in Macrophages Possess Prognosis and Immunotherapy Potential for Melanoma. Front Immunol. 2021;12:765615. [Crossref]  [PubMed]  [PMC]
  9. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology. 2010;11(5):373-84. [Crossref]
  10. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Frontiers in Immunology. 2018;9. [Crossref]  [PubMed]  [PMC]
  11. Turvey SE, Broide DH. Innate immunity. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S24-32. [Crossref]  [PubMed]  [PMC]
  12. Pacifici R. Role of T cells in the modulation of PTH action: physiological and clinical significance. Endocrine. 2013;44(3):576-82. [Crossref]  [PubMed]  [PMC]
  13. Kilian LS, Frank D, Rangrez AY. RhoA Signaling in Immune Cell Response and Cardiac Disease. Cells. 2021;10(7). Epub 20210703. [Crossref]  [PubMed]  [PMC]
  14. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479-96. [Crossref]  [PubMed]  [PMC]
  15. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in cancer therapy: the bright side of the moon. Experimental & Molecular Medicine. 2020;52(2):192-203. [Crossref]  [PubMed]  [PMC]
  16. Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, et al. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid Med Cell Longev. 2019;2019:6175804. [Crossref]  [PubMed]  [PMC]
  17. Zhao Y, Ye X, Xiong Z, Ihsan A, Ares I, Martínez M, et al. Cancer Metabolism: The Role of ROS in DNA Damage and Induction of Apoptosis in Cancer Cells. Metabolites. 2023;13(7):796. [Crossref]  [PubMed]  [PMC]
  18. Swann JB, Hayakawa Y, Zerafa N, Sheehan KC, Scott B, Schreiber RD, et al. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. The Journal of Immunology. 2007;178(12):7540-9. [Crossref]
  19. Bachanova V, Miller JS. NK Cells in Therapy of Cancer. 2014;19(1-2):133-41. [Crossref]  [PubMed]  [PMC]
  20. Ni J, Wang X, Stojanovic A, Zhang Q, Wincher M, Bühler L, et al. Single-Cell RNA Sequencing of Tumor-Infiltrating NK Cells Reveals that Inhibition of Transcription Factor HIF-1α Unleashes NK Cell Activity. Immunity. 2020;52(6):1075-87.e8. [Crossref]
  21. Müller L, Aigner P, Stoiber D. Type I Interferons and Natural Killer Cell Regulation in Cancer. Frontiers in Immunology. 2017;8. [Crossref]  [PubMed]  [PMC]
  22. Lee SC, Srivastava RM, López-Albaitero A, Ferrone S, Ferris RL. Natural killer (NK):dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity. Immunologic Research. 2011;50(2):248-54. [Crossref]  [PubMed]  [PMC]
  23. Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol. 2023;20(5):432-47. [Crossref]  [PubMed]  [PMC]
  24. Shurin MR. Dendritic cells presenting tumor antigen. Cancer Immunol Immunother. 1996;43(3):158-64. [Crossref]
  25. Qian L, Yu S, Yin C, Zhu B, Chen Z, Meng Z, et al. Plasma IFN-γ-inducible chemokines CXCL9 and CXCL10 correlate with survival and chemotherapeutic efficacy in advanced pancreatic ductal adenocarcinoma. Pancreatol. 2019;19(2):340-5. [Crossref]
  26. Han JH, Suh C-H, Jung J-Y, Ahn M-H, Han MH, Kwon JE, et al. Elevated circulating levels of the interferon-γ–induced chemokines are associated with disease activity and cutaneous manifestations in adult-onset Still’s disease. Sci. Rep. 2017;7(1):46652. [Crossref]  [PubMed]  [PMC]
  27. Liu H, Wang Y, Le Q, Tong J, Wang H. The IFN-γ-CXCL9/CXCL10-CXCR3 axis in vitiligo: Pathological mechanism and treatment. Eur J Immunol. 2024;54(4):2250281.
  28. Pützer BM, Hitt M, Muller WJ, Emtage P, Gauldie J, Graham FL. Interleukin 12 and B7-1 costimulatory molecule expressed by an adenovirus vector act synergistically to facilitate tumor regression. Proc Natl Acad Sci U S A. 1997;94(20):10889-94. [Crossref]  [PubMed]  [PMC]
  29. Pützer BM, Rödicker F, Hitt MM, Stiewe T, Esche H. Improved treatment of pancreatic cancer by IL-12 and B7.1 costimulation: antitumor efficacy and immunoregulation in a nonimmunogenic tumor model. Mol Ther. 2002;5(4):405-12. [Crossref]
  30. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13(16):4677-85. [Crossref]
  31. Bandola-Simon JM, Roche PA. Dendritic cells dysfunction in tumor-draining lymph nodes. The Journal of Immunology. 2021;206(1_Supplement):101.11-.11. [Crossref]
  32. MartIn-Fontecha A, Sebastiani S, Höpken UE, Uguccioni M, Lipp M, Lanzavecchia A, et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med. 2003;198(4):615-21. [Crossref]  [PubMed]  [PMC]
  33. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21(5):298-312. [Crossref]
  34. Arakaki R, Yamada A, Kudo Y, Hayashi Y, Ishimaru N. Mechanism of Activation-Induced Cell Death of T Cells and Regulation of FasL Expression. 2014;34(4):301-14. [Crossref]
  35. Krammer PH. CD95's deadly mission in the immune system. Nature. 2000;407(6805):789-95. [Crossref]
  36. Feuerer M, Rocha M, Bai L, Umansky V, Solomayer EF, Bastert G, et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer. 2001;92(1):96-105. [Crossref]
  37. Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci. 2013;1284(1):1-5. [Crossref]  [PubMed]  [PMC]
  38. Lasek W. Cancer immunoediting hypothesis: history, clinical implications and controversies. Cent Eur J Immunol. 2022;47(2):168-74. [Crossref]  [PubMed]  [PMC]
  39. O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nature Reviews Clinical Oncology. 2019;16(3):151-67. [Crossref]
  40. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology. 2002;3(11):991-8. [Crossref]
  41. Florea ID, Karaoulani C. Epigenetic Changes of the Immune System with Role in Tumor Development. In: Dumitrescu RG, Verma M, editors. Cancer Epigenetics for Precision Medicine : Methods and Protocols. New York, NY: Springer New York; 2018. p. 203-18. [Crossref]
  42. Yang K, Halima A, Chan TA. Antigen presentation in cancer — mechanisms and clinical implications for immunotherapy. Nature Reviews Clinical Oncology. 2023;20(9):604-23. [Crossref]
  43. Ferrington DA, Gregerson DS. Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci. 2012;109:75-112. [Crossref]  [PubMed]  [PMC]
  44. Jongsma MLM, Neefjes J, Spaapen RM. Playing hide and seek: Tumor cells in control of MHC class I antigen presentation. Molecular Immunology. 2021;136:36-44. [Crossref]
  45. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107-11. [Crossref]
  46. Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther. 2023;8(1):450. [Crossref]  [PubMed]  [PMC]
  47. Niknafs N, Balan A, Cherry C, Hummelink K, Monkhorst K, Shao XM, ET AL. Persistent mutation burden drives sustained anti-tumor immune responses. Nat Med. 2023 Feb;29(2):440-9. [Crossref]  [PubMed]  [PMC]
  48. Lindenmann J, Klein PA. Viral oncolysis: increased immunogenicity of host cell antigen associated with influenza virus. J Exp Med. 1967;126(1):93-108. [Crossref]  [PubMed]  [PMC]
  49. Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol. 2016;39:1-6. [Crossref]  [PubMed]  [PMC]
  50. Papageorgis P, Stylianopoulos T. Role of TGFβ in regulation of the tumor microenvironment and drug delivery (review). Int J Oncol. 2015;46(3):933-43. [Crossref]  [PubMed]  [PMC]
  51. Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol. 2022;7(69):eabi4613.
  52. Schmiedel D, Mandelboim O. NKG2D Ligands–Critical Targets for Cancer Immune Escape and Therapy. Front Immunol. 2018;9. [Crossref]  [PubMed]  [PMC]
  53. Safa AR. Roles of c-FLIP in Apoptosis, Necroptosis, and Autophagy. J Carcinog Mutagen. 2013;Suppl 6. [Crossref]  [PubMed]  [PMC]
  54. Humphreys L, Espona-Fiedler M, Longley DB. FLIP as a therapeutic target in cancer. The FEBS Journal. 2018;285(22):4104-23.
  55. Holmgaard Rikke B, Zamarin D, Li Y, Gasmi B, Munn David H, Allison James P, et al. Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner. Cell Reports. 2015;13(2):412-24. [Crossref]  [PubMed]  [PMC]
  56. Lee HL, Jang JW, Lee SW, Yoo SH, Kwon JH, Nam SW, et al. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Scientific Reports. 2019;9(1):3260. [Crossref]  [PubMed]  [PMC]
  57. Ullah M, Meziani S, Shah S, Kaci R, Pimpie C, Pocard M, et al. Differentiation of cancer cells upregulates HLA‑G and PD‑L1. Oncol Rep. 2020;43(6):1797-804. [Crossref]  [PubMed]  [PMC]
  58. Chen S, Crabill GA, Pritchard TS, McMiller TL, Wei P, Pardoll DM, et al. Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother Cancer. 2019;7(1):305. [Crossref]  [PubMed]  [PMC]
  59. Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol. 2016;39(1):98-106. [Crossref]  [PubMed]  [PMC]
  60. Gianchecchi E, Fierabracci A. Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD-1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression. Front Immunol. 2018;9. [Crossref]  [PubMed]  [PMC]
  61. Munn LL. Cancer and inflammation. WIREs Systems Biology and Medicine. 2017;9(2):e1370. [Crossref]  [PubMed]  [PMC]
  62. Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nature Reviews Clinical Oncology. 2015;12(10):584-96. [Crossref]
  63. Becker JC, Andersen MH, Schrama D, thor Straten P. Immune-suppressive properties of the tumor microenvironment. Cancer Immunology, Immunotherapy. 2013;62(7):1137-48. [Crossref]  [PubMed]  [PMC]
  64. Davis RJ, Van Waes C, Allen CT. Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncol. 2016;58:59-70. [Crossref]  [PubMed]  [PMC]
  65. Lorenzo-Sanz L, Muñoz P. Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. Cancer Microenviron. 2019;12(2):119-32. [Crossref]  [PubMed]  [PMC]
  66. Demoulin S, Herfs M, Delvenne P, Hubert P. Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms. J Leukoc Biol. 2012;93(3):343-52. [Crossref]
  67. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66(1):1-9. [Crossref]
  68. Goswami TK, Singh M, Dhawan M, Mitra S, Emran TB, Rabaan AA, et al. Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders – Advances and challenges. Hum Vaccin Immunother. 2022;18(1):2035117. [Crossref]  [PubMed]  [PMC]
  69. Umansky V, Sevko A. Tumor Microenvironment and Myeloid-Derived Suppressor Cells. Cancer Microenviron. 2013;6(2):169-77. [Crossref]  [PubMed]  [PMC]
  70. Solinas C, Aiello M, Rozali E, Lambertini M, Willard-Gallo K, Migliori E. Programmed cell death-ligand 2: A neglected but important target in the immune response to cancer? Transl Oncol. 2020;13(10):100811. [Crossref]  [PubMed]  [PMC]