Ultrasonography in Trauma

Ayla AKCA ÇAĞLARa , Özden ÖZGÜR HOROZb

aGazi University Faculty of Medicine, Department of Pediatric Emergency Medicine, Ankara, Türkiye
bÇukurova University Faculty of Medicine, Deparment of Pediatric Intensive Care, Adana, Türkiye

ABSTRACT
Trauma is the leading cause of morbidity and mortality in children of all ages. Accurate and timely determination of the extent of injury in children is difficult. Computed tomography (CT) is the imaging modality of choice for diagnosis in pediatric trauma, but it also carries an increased risk of malignancy due to radiation exposure. Point-of-care ultrasound has many advantages over CT, such as ease of use, non-invasiveness, no ionizing radiation, and repeatability of assessments. There are many indications for using ultrasound in trauma, but especially in critically ill patients with major trauma, ultrasound has a unique adjunctive role in identifying life-threatening conditions in the management of emergency life-saving interventions and resuscitation. This chapter will mention the use and application of bedside ultrasonography in the evaluation and management of pediatric trauma patients.
Keywords: Ultrasonography; pediatrics; multiple trauma; critical care

Referanslar

  1. Paneitz DC, Ahmad S. Pediatric Trauma Update. Mo Med. 2018;115(5):438-42.
  2. Hannon MM, Middelberg LK, Lee LK. The Initial Approach to the Multisystem Pediatric Trauma Patient. Pediatr Emerg Care. 2022;38(6):290-8. [Crossref]  [PubMed]
  3. Rothrock SG, Green SM, Morgan R. Abdominal trauma in infants and children: prompt identification and early management of serious and life-threatening injuries. Part I: injury patterns and initial assessment. Pediatr Emerg Care. 2000;16(2):106-15. [Crossref]  [PubMed]
  4. Aslan N, Yildizdas D, Horoz OO, Ekinci F, Study-Group TP. Point-of-care ultrasound use in pediatric intensive care units in Turkey. Turk J Pediatr. 2020;62(5):770-7. [Crossref]  [PubMed]
  5. Guttman J, Nelson BP. Diagnostic point-of-care ultrasound: assessment techniques for the pediatric trauma patient. Pediatr Emerg Med Pract. 2019; 16(Suppl 7):1-50.
  6. Gleeson T, Blehar D. Point-of-Care Ultrasound in Trauma. Semin Ultrasound CT MR. 2018;39(4):374-83. [Crossref]  [PubMed]
  7. Rozycki GS, Shackford SR. Ultrasound, what every trauma surgeon should know. J Trauma. 1996;40(1):1-4. [Crossref]  [PubMed]
  8. Kirkpatrick AW, Sirois M, Laupland KB, Liu D, Rowan K, Ball CG, et al. Hand-held thoracic sonography for detecting post-traumatic pneumothoraces: the Extended Focused Assessment with Sonography for Trauma (EFAST). J Trauma. 2004;57(2):288-95. [Crossref]  [PubMed]
  9. Brenchley J, Walker A, Sloan JP, Hassan TB, Venables H. Evaluation of focussed assessment with sonography in trauma (FAST) by UK emergency physicians. Emerg Med J. 2006;23(6):446-8. [Crossref]  [PubMed]  [PMC]
  10. Rippey JC, Royse AG. Ultrasound in trauma. Best Pract Res Clin Anaesthesiol. 2009;23(3):343-62. [Crossref]  [PubMed]
  11. Holmes JF, Gladman A, Chang CH. Performance of abdominal ultrasonography in pediatric blunt trauma patients: a meta-analysis. J Pediatr Surg. 2007;42(9):1588-94. [Crossref]  [PubMed]
  12. Myers J. Focused assessment with sonography for trauma (FAST): the truth about ultrasound in blunt trauma. J Trauma. 2007;62(6 Suppl):S28. [Crossref]  [PubMed]
  13. Lam, S.H., The extended focused assessment with sonography for trauma (E-FAST), in Pediatric emergency and critical care ultrasound. Cambridge, United Kingdom: Cambridge University Press; 2013. p. 40-56. [Crossref]
  14. Paltiel HJ, Barth RA, Bruno C, Chen AE, Deganello A, Harkanyi Z, et al. Contrast-enhanced ultrasound of blunt abdominal trauma in children. Pediatr Radiol. 2021;51(12):2253-69. [Crossref]  [PubMed]
  15. Richards JR, McGahan JP. FAST of the Abdomen-Beyond the Basics: False Positives, Limitations, and Approach to the Unstable Patient. Fundamentals of Emergency Ultrasound. 2019: p. 162.
  16. Wherrett LJ, Boulanger BR, McLellan BA, Brenneman FD, Rizoli SB, Culhane J, et al. Hypotension after blunt abdominal trauma: the role of emergent abdominal sonography in surgical triage. J Trauma. 1996;41(5): 815-20. [Crossref]  [PubMed]
  17. Abrams BJ, Sukumvanich P, Seibel R, Moscati R, Jehle D. Ultrasound for the detection of intraperitoneal fluid: the role of Trendelenburg positioning. Am J Emerg Med. 1999;17(2):117-20. [Crossref]  [PubMed]
  18. Hafez M. Extended Focused Assessment with Sonography for Trauma (EFAST) Exam. Journal of Medical Insight. 2021;2021(5). [Crossref]
  19. Ma OJ, Mateer JR, Ogata M, Kefer MP, Wittmann D, Aprahamian C. Prospective analysis of a rapid trauma ultrasound examination performed by emergency physicians. J Trauma. 1995;38(6):879-85. [Crossref]  [PubMed]
  20. Tsang TS, Enriquez-Sarano M, Freeman WK, Barnes ME, Sinak LJ, Gersh BJ, et al. Consecutive 1127 therapeutic echocardiographically guided pericardiocenteses: clinical profile, practice patterns, and outcomes spanning 21 years. Mayo Clin Proc. 2002;77(5):429-36. [Crossref]  [PubMed]
  21. Brenkert TE, Adams C, Vieira RL, Rempell RG. Peritoneal fluid localization on FAST examination in the pediatric trauma patient. Am J Emerg Med. 2017; 35(10):1497-1499. [Crossref]  [PubMed]
  22. Branney SW, Wolfe RE, Moore EE, Albert NP, Heinig M, Mestek M, Eule J. Quantitative sensitivity of ultrasound in detecting free intraperitoneal fluid. J Trauma. 1995;39(2):375-80. [Crossref]  [PubMed]
  23. Lichtenstein DA. Lung ultrasound in the critically ill. Journal of Medical Ultrasound. 2009;17(3):125-42. [Crossref]
  24. Blaivas M, Lyon M, Duggal S. A prospective comparison of supine chest radiography and bedside ultrasound for the diagnosis of traumatic pneumothorax. Acad Emerg Med. 2005;12(9):844-9. [Crossref]  [PubMed]
  25. Doniger SJ. Focused cardiac ultrasound. In: Pediatric Emergency Critical Care and Ultrasound. Cambridge, UK: Cambridge University Press; 2013. p. 57-70. [Crossref]
  26. Lu JC, Riley A, Conlon T, Levine JC, Kwan C, Miller-Hance WC, et al. Recommendations for Cardiac Point-of-Care Ultrasound in Children: A Report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2023;36(3):265-77. [Crossref]  [PubMed]
  27. McGowan JH, Cleland JG. Reliability of reporting left ventricular systolic function by echocardiography: a systematic review of 3 methods. Am Heart J. 2003;146(3):388-97. [Crossref]  [PubMed]
  28. Ciozda W, et al. The efficacy of sonographic measurement of inferior vena cava diameter as an estimate of central venous pressure. Cardiovascular ultrasound. 2015;14(1): p. 1-8. [Crossref]  [PubMed]  [PMC]
  29. Yildizdas D, Aslan N. Ultrasonographic inferior vena cava collapsibility and distensibility indices for detecting the volume status of critically ill pediatric patients. J Ultrason. 2020;20(82):e205-e9. [Crossref]  [PubMed]  [PMC]
  30. Yıldızdaş D, Özgür Horoz Ö, Yöntem A, Ekinci F, Aslan N, Laflı Tunay D, et al. Point-of-care ultrasound assessment of the inferior vena cava distensibility index in mechanically ventilated children in the operating room. Turk J Med Sci. 2021;51(3):1071-9. [Crossref]  [PubMed]  [PMC]
  31. Bilgili B, Haliloglu M, Tugtepe H, Umuroglu T. The Assessment of Intravascular Volume with Inferior Vena Cava and Internal Jugular Vein Distensibility Indexes in Children Undergoing Urologic Surgery. J Invest Surg. 2018; 31(6):523-8. [Crossref]  [PubMed]
  32. Stawicki SP, Adkins EJ, Eiferman DS, Evans DC, Ali NA, Njoku C, et al. Prospective evaluation of intravascular volume status in critically ill patients: does inferior vena cava collapsibility correlate with central venous pressure? J Trauma Acute Care Surg. 2014;76(4):956-63; discussion 963-4. [Crossref]  [PubMed]
  33. Chen L, Kim Y, Santucci KA. Use of ultrasound measurement of the inferior vena cava diameter as an objective tool in the assessment of children with clinical dehydration. Acad Emerg Med. 2007;14(10):841-5. [Crossref]  [PubMed]  [PMC]
  34. Horoz OO, Yildizdas D, Aslan N, Coban Y, Misirlioglu M, Haytoglu Z, et al. Sonographic measurements of Inferior Vena Cava, Aorta, anda IVC/aorta ratio in healthy children. Niger J Clin Pract. 2022;25(6):825-32. [Crossref]  [PubMed]
  35. Al Talaq F, Noble VE. Inferior vena cava, aorta assessment. Pediatric Emergency Critical Care and Ultrasound. 2014. p. 86. [Crossref]
  36. Tsung JW, Blaivas M, Cooper A, Levick NR. A rapid noninvasive method of detecting elevated intracranial pressure using bedside ocular ultrasound: application to 3 cases of head trauma in the pediatric emergency department. Pediatr Emerg Care. 2005;21(2):94-8. [Crossref]  [PubMed]
  37. Arslan D, Yıldızdaş D, Horoz ÖÖ, Aslan N, İncecik F. Evaluation of the relationship between NIRS (near-infrared spectroscopy) and optic nerve sheath diameter measurement in children with increased intracranial pressure: a pilot study. Ital J Pediatr. 2021;47(1):88. [Crossref]  [PubMed]  [PMC]
  38. Aslan N, Yıldızdaş D, Horoz ÖÖ, Özsoy M, Yöntem A, Çetinalp E, et al. Evaluation of ultrasonographic optic nerve sheath diameter and central retinal artery Doppler indices by point-of-care ultrasound in pediatric patients with increased intracranial pressure. Turk J Pediatr. 2021;63(2):300-6. [Crossref]  [PubMed]
  39. Irazuzta JE, Brown ME, Akhtar J. Bedside Optic Nerve Sheath Diameter Assessment in the Identification of Increased Intracranial Pressure in Suspected Idiopathic Intracranial Hypertension. Pediatr Neurol. 2016;54:35-8. [Crossref]  [PubMed]
  40. Sahin A, Cingü AK, Ari S, Cinar Y, Caça I. Bilateral optic disc drusen mimicking papilledema. J Clin Neurol. 2012;8(2):151-4. [Crossref]  [PubMed]  [PMC]
  41. Mishra PR, Bhoi S, Sinha TP. Integration of Point-of-care Ultrasound during Rapid Sequence Intubation in Trauma Resuscitation. J Emerg Trauma Shock. 2018;11(2):92-7. [Crossref]  [PubMed]  [PMC]
  42. Dubey PK, Singh K, Bharti AK. Point-of-Care Ultrasonography for Evaluation of Blunt Tracheal Injury. J Cardiothorac Vasc Anesth. 2021;35(8):2545-6. [Crossref]  [PubMed]
  43. Raphael DT, Conard FU 3rd. Ultrasound confirmation of endotracheal tube placement. J Clin Ultrasound. 1987;15(7):459-62. [Crossref]  [PubMed]
  44. Lin MJ, Gurley K, Hoffmann B. Bedside Ultrasound for Tracheal Tube Verification in Pediatric Emergency Department and ICU Patients: A Systematic Review. Pediatr Crit Care Med. 2016;17(10):e469-e76. [Crossref]  [PubMed]
  45. Gottlieb M, Holladay D, Peksa GD. Ultrasonography for the Confirmation of Endotracheal Tube Intubation: A Systematic Review and Meta-Analysis. Ann Emerg Med. 2018;72(6):627-36. [Crossref]  [PubMed]
  46. Chenkin J, McCartney CJ, Jelic T, Romano M, Heslop C, Bandiera G. Defining the learning curve of point-of-care ultrasound for confirming endotracheal tube placement by emergency physicians. Crit Ultrasound J. 2015;7(1):14. [Crossref]  [PubMed]  [PMC]
  47. Rabiner JE, Friedman LM, Khine H, Avner JR, Tsung JW. Accuracy of point-of-care ultrasound for diagnosis of skull fractures in children. Pediatrics. 2013; 131(6):e1757-64. [Crossref]  [PubMed]
  48. Parri N, Crosby BJ, Glass C, Mannelli F, Sforzi I, Schiavone R, et al. Ability of emergency ultrasonography to detect pediatric skull fractures: a prospective, observational study. J Emerg Med. 2013;44(1):135-41. [Crossref]  [PubMed]
  49. Wellsh BM, Kuzma JM. Ultrasound-guided pediatric forearm fracture reductions in a resource-limited ED. Am J Emerg Med. 2016;34(1):40-4. [Crossref]  [PubMed]
  50. Ultrasound Guidelines: Emergency, Point-of-Care and Clinical Ultrasound Guidelines in Medicine. Ann Emerg Med. 2017;69(5):e27-e54. [Crossref]  [PubMed]