UNDERSTANDING NEUROINFLAMMATION
Çağla Şişman1
Ufuk Emre Toprak2
1İstanbul Training and Research Hospital, Department of Neurology, İstanbul, Türkiye
2İstanbul Training and Research Hospital, Department of Neurology, İstanbul, Türkiye
Şişman Ç, Toprak UE. Understanding Neuroinflammation. In: Şahin Ş editor. Neuroinflammation: Mechanisms, Clinical Implications, and Therapeutic Approaches. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.1-10.
ABSTRACT
Neuroinflammation is defined as an inflammatory response occurring in the structures of the nervous system. This process, which develops in the brain and spinal cord, is a biological reaction initiated by the central nervous system to protect itself from harmful stimuli and to prevent or limit potential tissue damage. Neuroinflammation is shaped by the interaction of glial cells, endothelial cells, and peripheral immune cells. During this process, inflammatory mediators such as cytokines, chemokines, and reactive oxygen radicals are produced. Although this response initially serves as a protective mechanism, if it becomes excessive or chronic, it can lead to impairments in nervous system functions.
The severity of neuroinflammation varies depending on the intensity, duration, and nature of the stimulus. Inflammation can lead to the accumulation of immune cells in the tissue, tissue damage, and cell death. While this process aims to protect neural cells, prolonged or excessive activation of the immune system may contribute to the development of depression, cognitive disorders, and neurological diseases. Studies in recent years have supported the view that chronic neuroinflammation plays a significant role in neurological conditions such as Alzheimer Disease (AD), Parkinson Disease (PD), and Multiple Sclerosis (MS).
Neuroinflammation is necessary for neuronal protection and the regulation of synaptic plasticity. However, when this process is persistent and at high levels, it can lead to damage in synaptic connections. Therefore, neuroinflammation is a dual-faceted condition that can be both protective and harmful. The adverse effects of neuroinflammation can generally be maintained within a balanced state referred to as “euinflammation.” This article thoroughly examines the definition, development, and impact of neuroinflammation on neurological diseases.
Keywords: Neuroinflammation; Inflammation; Microglia; Glymphatic system; Cytokines; Immunity; Neurodegeneration; Gut-brain axis; Blood-brain barrier
Kaynak Göster
Referanslar
- Galea E, Graeber MB. Neuroinflammation: The Abused Concept. ASN Neuro. 2023;15:17590914231197523. [Crossref] [PubMed] [PMC]
- Diren F, Civelek E, Kabataş S, Üniversitesi M, Enstitüsü SB, Ve A, et al. Beyin İmmünolojisi ve Kafa Travmalarında Nöroinflamasyon Brain Immunology and Neuroinflammation in Head Trauma Türk Nöroşir Derg 2020;30(2)209-216.
- Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13-25. [Crossref] [PubMed]
- Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: Hiding in plain sight. Immunol Rev. 2006;213(1):48-65. [Crossref] [PubMed] [PMC]
- Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: The role and consequences. Neurosci Res. 2014;79(1):1-12. [Crossref] [PubMed]
- Negi N, Das BK. CNS: Not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int Rev Immunol. 2018;37(1):57-68. [Crossref] [PubMed]
- Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s and Dementia. 2016 Jun 1;12(6):719-32. [Crossref] [PubMed]
- Srivastava R, Aslam M, Kalluri SR, Schirmer L, Buck D, Tackenberg B, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. New England Journal of Medicine. 2012;367(2):115-23. [Crossref] [PubMed] [PMC]
- Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G. Neuroinflammation pathways: a general review. International Journal of Neuroscience [Internet]. 2017;127(7):624-33. [Crossref] [PubMed]
- Vance RE, Isberg RR, Portnoy DA. Patterns of Pathogenesis: Discrimination of Pathogenic and Nonpathogenic Microbes by the Innate Immune System. Cell Host Microbe. 2009;6(1):10-21. [Crossref] [PubMed] [PMC]
- Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: Inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43-53. [Crossref] [PubMed]
- Liu B, Hong JS. Role of Microglia in Inflammation-Mediated Neurodegenerative Diseases: Mechanisms and Strategies for Therapeutic Intervention. J Pharmacol Exp Ther. 2003;304(1):1-7. [Crossref] [PubMed]
- Echeverria-Villalobos M, Tortorici V, Brito BE, Ryskamp D, Uribe A, Weaver T. The role of neuroinflammation in the transition of acute to chronic pain and the opioid-induced hyperalgesia and tolerance. Front Pharmacol [Internet]. 2023;14. [Crossref] [PubMed] [PMC]
- Cairns BE, Arendt-Nielsen L, Sacerdote P. Perspectives in pain research 2014: Neuroinflammation and glial cell activation: The cause of transition from acute to chronic pain? Scand J Pain. 2015;6(C):3-6. [Crossref] [PubMed]
- Griffiths M, Neal JW, Gasque P. Innate Immunity and Protective Neuroinflammation: New Emphasis on the Role of Neuroimmune Regulatory Proteins. Int Rev Neurobiol. 2007;82:29-55. [Crossref] [PubMed]
- Rua R, McGavern DB. Advances in Meningeal Immunity. Trends Mol Med. 2018;24(6):542-59. [Crossref] [PubMed] [PMC]
- Alves De Lima K, Rustenhoven J, Kipnis J. Meningeal Immunity and Its Function in Maintenance of the Central Nervous System in Health and Disease. Annu Rev Immunol [Internet]. 2020;38:597-620. [Crossref] [PubMed]
- Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol [Internet]. 2017;18(2):123-31. [Crossref] [PubMed]
- Borst K, Schwabenland M, Prinz M. Microglia metabolism in health and disease. Neurochem Int. 2019;130. [Crossref] [PubMed]
- Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science [Internet]. 2005;308(5726):1314-8. Available from: [PubMed]
- Pósfai B, Cserép C, Orsolits B, Dénes Á. New Insights into Microglia-Neuron Interactions: A Neuron’s Perspective. Neuroscience. 2019 May 1;405:103-17. [Crossref] [PubMed]
- Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Developmental Brain Research [Internet]. 1999;117(2):145-52. [Crossref] [PubMed]
- Melchior B, Puntambekar SS, Carson MJ. Microglia and the control of autoreactive T cell responses. Neurochem Int. 2006;49(2):145-53. [Crossref] [PubMed] [PMC]
- Konishi H, Koizumi S, Kiyama H. Phagocytic astrocytes: Emerging from the shadows of microglia. Glia. 2022;70(6):1009-26. [Crossref] [PubMed] [PMC]
- Konishi H, Okamoto T, Hara Y, Komine O, Tamada H, Maeda M, et al. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J. 2020;16;39(22). [Crossref] [PubMed] [PMC]
- Ayata P, Badimon A, Strasburger HJ, Duff MK, Montgomery SE, Loh YHE, et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci [Internet]. 2018;21(8):1049-60. [Crossref] [PubMed] [PMC]
- Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res. 2021;99(10):2427-62. [Crossref] [PubMed]
- Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte Crosstalk in CNS Inflammation. Neuron [Internet]. 2020;108(4):608-22. [Crossref] [PubMed] [PMC]
- Giovannoni F, Quintana FJ. The Role of Astrocytes in CNS Inflammation. Trends Immunol. 2020;41(9):805-19. [Crossref] [PubMed] [PMC]
- Fan YY, Huo J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int [Internet]. 2021;148. [Crossref] [PubMed]
- Santiago-Balmaseda A, Aguirre-Orozco A, Valenzuela-Arze ta IE, Villegas-Rojas MM, Pérez-Segura I, Jiménez-Barrios N, et al. Neurodegenerative Diseases: Unraveling the Heterogeneity of Astrocytes. Cells [Internet]. 2024;13(11). [Crossref] [PubMed] [PMC]
- Sofroniew M V. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol [Internet]. 2020;41(9):758-70. [Crossref] [PubMed] [PMC]
- Keirstead HS, Blakemore WF. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. Adv Exp Med Biol. 2000;468:183-97. [Crossref] [PubMed]
- Duncan ID, Radcliff AB, Heidari M, Kidd G, August BK, Wierenga LA. The adult oligodendrocyte can participate in remyelination. Proc Natl Acad Sci U S A. 2018;115(50):E11807-16. [Crossref] [PubMed] [PMC]
- Zeis T, Enz L, Schaeren-Wiemers N. The immunomodulatory oligodendrocyte. Brain Res [Internet]. 2016;1641(Pt A):139-48. [Crossref] [PubMed]
- Zeis T, Schaeren-Wiemers N. Lame ducks or fierce creatures? The role of oligodendrocytes in multiple sclerosis. J Mol Neurosci [Internet]. 2008;35(1):91-100. [Crossref] [PubMed]
- Engelhardt B. Blood-brain barrier differentiation. Science (1979). 2011;334(6063):1652-3. [Crossref] [PubMed]
- Mapunda JA, Tibar H, Regragui W, Engelhardt B. How Does the Immune System Enter the Brain? Front Immunol [Internet]. 2022;13. [Crossref] [PubMed] [PMC]
- Derk J, Como CN, Jones HE, Joyce LR, Kim S, Spencer BL, et al. Formation and function of the meningeal arachnoid barrier around the developing mouse brain. Dev Cell [Internet]. 2023;58(8):635-644.e4. [Crossref] [PubMed] [PMC]
- Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol [Internet]. 2009;31(4):497-511. [Crossref] [PubMed]
- Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS [Internet]. 2011;8(1):3. [Crossref] [PubMed] [PMC]
- Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol. 2007;28(1):5-11. [Crossref] [PubMed]
- Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006 Jan;7(1):41-53. [Crossref] [PubMed]
- Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA, et al. Lipopolysaccharide alters the blood–brain barrier transport of amyloid protein: A mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav Immun. 2009 May 1;23(4):507-17. [Crossref] [PubMed]
- Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, et al. The Hedgehog pathway promotes bloodbrain barrier integrity and CNS immune quiescence. Science [Internet]. 2011;334(6063):1727-31. [Crossref] [PubMed]
- Papatriantafyllou M. Neuroimmunology: a CNS guard as prickly as a hedgehog. Nat Rev Immunol [Internet]. 2011;12(1):4. [Crossref] [PubMed]
- Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. Journal of Clinical Investigation. 2017;127(9):3210-9. [Crossref] [PubMed] [PMC]
- Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Saceleanu VM. The Brain’s Glymphatic System: Drawing New Perspectives in Neuroscience. Brain Sci [Internet]. 2023;13(7). [Crossref] [PubMed] [PMC]
- Osuna-Ramos JF, Camberos-Barraza J, Torres-Mondragón LE, Rábago-Monzón ÁR, Camacho-Zamora A, Valdez-Flores MA, et al. Interplay between the Glymphatic System and the Endocannabinoid System: Implications for Brain Health and Disease. Int J Mol Sci. 2023;24(24). [Crossref] [PubMed] [PMC]
- Abautret-Daly Á, Dempsey E, Parra-Blanco A, Medina C, Harkin A. Gut-brain actions underlying comorbid anxiety and depression associated with inflammatory bowel disease. 2017. [Crossref] [PubMed]
- Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241-55. [Crossref] [PubMed]
- Han Y, Wang B, Gao H, He C, Hua R, Liang C, et al. Vagus Nerve and Underlying Impact on the Gut Microbiota-Brain Axis in Behavior and Neurodegenerative Diseases. J Inflamm Res [Internet]. 2022;15:6213. [Crossref] [PubMed] [PMC]