Where are We on Graphene in Regenerative Dentistry?

periodontoloji-9-3-2023

Yonca NAZİKERa , Nur BALCIa

aİstanbul Medipol University Faculty of Dentistry, Department of Periodontology, İstanbul, Türkiye

ABSTRACT
Periodontitis is a common infectious disease that causes damage to the periodontal supporting tissues and can result in tooth loss. The aim of periodontal therapy is to restore the structure and function of periodontal tissues through periodontal regeneration by stimulating the desired cell types. In recent years, research has been conducted to produce reliable and predictable materials for use in periodontal regenerative therapy and to improve the properties of currently used skeletal structures, membranes, and hard tissue grafts. Graphene is a new material of great interest in biomedical fields. Due to its exceptional mechanical, electrical, and chemical properties, as well as its osteogenic and regenerative properties, its incorporation into materials used in regenerative dentistry is on the agenda. This chapter presents the state of the art of periodontal regeneration applications with graphene based materials, focusing on the control of graphene and its derivatives on stem cells of dental origin.
Keywords: Graphene oxide; guided tissue regeneration; tissue scaffolds; multipotent stem cells; tissue engineering

Referanslar

  1. Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007;6:83-191. [Crossref]  [PubMed]
  2. Geim AK. Graphene: Status and Prospects. Science. 2009;19:1530-4. [Crossref]  [PubMed]
  3. Jastrzebska AM, Kurtycz P, Olszyna AR. Recent advances in graphene family materials toxicity investigations. J Nanopart Res. 2012;14:1320-40. [Crossref]  [PubMed]  [PMC]
  4. Zhao H, Ding R, Zhao X, et al. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov Today. 2017;22:1302-17. [Crossref]  [PubMed]
  5. Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 2009;47(2):493-9. [Crossref]
  6. Zhao J, Pei S, Ren W, Gao L, Cheng HM. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano. 2010;4(9):5245-52. [Crossref]  [PubMed]
  7. Guazzo R, Gardin C, Bellin G, Sbricoli L, Ferroni L, Ludovichetti SF, et al. Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials. 2018;8(5):349. [Crossref]  [PubMed]  [PMC]
  8. Ruiz ON, Fernando KS, Wang B, Brown NA, Luo PG, McNamara ND, et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011;5(10):8100-7. [Crossref]  [PubMed]
  9. Kalbacova M, Broz A, Kong J, Kalbac M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon. 2010;48(15):4323-9. [Crossref]
  10. Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis - a comprehensive review. J Clin Periodontol. 2017;44(18):94-105. [Crossref]  [PubMed]
  11. Villar CC, Cochran DL. Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin North Am. 2010;54:73-92. [Crossref]  [PubMed]
  12. Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC. Tissue engineering in dentistry. J. Dent. 2014;42:915-28. [Crossref]  [PubMed]
  13. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J. Endod. 2008;34:962-9. [Crossref]  [PubMed]
  14. Sammartino G, Ehrenfest DMD, Shibli JA, Galindo-Moreno P. Tissue Engineering and Dental Implantology: Biomaterials, New Technologies, and Stem Cells. BioMed Research International. 2016;2016:3. [Crossref]  [PubMed]  [PMC]
  15. Zadpoor AA. Bone tissue regeneration: The role of scaffold geometry. Biomaterials Science. 2015;3(2):231-45. [Crossref]  [PubMed]
  16. Wu C, Xia L, Han P, Xu M, Fang B, Wang J, et al. Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon. 2015;93:116-29. [Crossref]
  17. Ankrum J, Karp JM. Mesenchymal stem cell therapy: Two steps forward, one step back. Trends Mol Med. 2010;16:203-9. [Crossref]  [PubMed]  [PMC]
  18. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011;5:4670-8. [Crossref]  [PubMed]
  19. Lee WC, Lim CHY, Shi H, Tang LA, Wang Y, Lim CT, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5:7334-41. [Crossref]  [PubMed]
  20. Wei C, Liu Z, Jiang F, Zeng B, Huang M, Yu D. Cellular behaviours of bone marrow-derived mesenchymal stem cells towards pristine graphene oxide nanosheets. Cell Prolif. 2017;50:5. [Crossref]  [PubMed]  [PMC]
  21. Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, et al. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale. 2013;5:4171-6. [Crossref]  [PubMed]  [PMC]
  22. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Concise Review: Dental Pulp Stem Cells: A Novel Cell Therapy for Retinal and Central Nervous System Repair. Stem Cells. 2017;35(1):61-7. [Crossref]  [PubMed]
  23. Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29:532-9. [Crossref]  [PubMed]
  24. Rosa V, Xie H, Dubey N, Madanagopal TT, Rajan SS, Morin JLP, et al. Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dental Materials. 2016;32(8):1019-25. [Crossref]  [PubMed]
  25. Feng JQ, Luan X, Wallace J, Jing D, Ohshima T, Kulkarni AB, et al. Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem. 1998;273:9457-64. [Crossref]  [PubMed]
  26. Abagnale G, Sechi A, Steger M, Zhou Q, Kuo C-C, Aydin G, et al. Surface topography guides morphology and spatial patterning of induced pluripotent stem cell colonies. Stem Cell Rep. 2017;9(2):654-66. [Crossref]  [PubMed]  [PMC]
  27. Ku SH, Park CB. Myoblast differentiation on graphene oxide. Biomaterials. 2013;34(8):2017-23. [Crossref]  [PubMed]
  28. Guo L, Hou Y, Song L, Zhu S, Lin F, Bai Y. D-Mannose Enhanced Immunomodulation of Periodontal Ligament Stem Cells via Inhibiting IL-6 Secretion. Stem Cells International. 2018;2018. [Crossref]  [PubMed]  [PMC]
  29. Rodríguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S, Ros-Roca MA, Algueró MC, Atucha NM, et al. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. Journal of Materials Science: Materials in Medicine. 2014;25(12):2731-41. [Crossref]  [PubMed]
  30. Xie H, Cao T, Gomes JV, Castro Neto AH, Rosa V. Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells. Carbon. 2015;93:266-75. [Crossref]
  31. Olteanu D, Filip A, Socaci C, Biris AR, Filip X, Coros M, et al. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids and Surfaces B: Biointerfaces. 2015;136:791-8. [Crossref]  [PubMed]
  32. Gottlow J, Nyman S, Karring T, Lindhe J. New attachment formation as the result of controlled tissue regeneration. J. Clin. Periodontol. 1984;11:494-503. [Crossref]  [PubMed]
  33. Elkhenany H, Amelse L, Lafont A, Bourdo S, Caldwell M, Neilsen N, et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol. 2015;35(4):367-74. [Crossref]  [PubMed]
  34. Pajoumshariati S, Shirali H, Yavari SK, Sheikholeslami SN, Lotfi G, Abbas FM, et al. GBR membrane of novel poly (butylene succinate-co-glycolate) co-polyester co-polymer for periodontal application. Scientific Reports. 2018;8(1):7513. [Crossref]  [PubMed]  [PMC]
  35. Shin YC, Song SJ, Jeong SJ, Kim B, Kwon IK, Hong SW, et al. Graphene-based nanocomposites as promising options for hard tissue regeneration. Cut Edge Enabling Technol Regen Med. 2018;1078:103-17. [Crossref]  [PubMed]
  36. Wu YC, Shaw SY, Lin HR, Lee TM, Yang CY. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials. 2006;27(6):896-904 [Crossref]  [PubMed]
  37. Lee JH, Shin YC, Lee SM, Jin OS, Kang SH, Hong SW, et al. Enhanced osteogenesis by reduced graphene oxide/ hydroxyapatite nanocomposites. Sci Rep. 2015;5:18833. [Crossref]  [PubMed]  [PMC]
  38. Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev. 2016;105:255-74. [Crossref]  [PubMed]  [PMC]
  39. Fan Z, Wang J, Wang Z, Ran H, Li Y, Niu L, et al. One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon. 2014;66:407-16. [Crossref]
  40. Kang S, Park JB, Lee TJ, Ryud S, Bhange SH, Laf WG, et al. Covalent conjugation of mechanically stiff graphene oxide flakes to threedimensional collagen scaffolds for osteogenic differentiation of human mesenchymal stem cells. Carbon. 2015;83:162-72. [Crossref]
  41. Radunovic M, De Colli M, De Marco P, Di Nisio C, Fontana A, Piattelli A, et al. Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence. J Biomed Mater Res A. 2017;105:2312-20. [Crossref]  [PubMed]
  42. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21):5536-44. [Crossref]  [PubMed]  [PMC]
  43. Cha C, Shin SR, Gao X, Annabi N, Dokmeci MR, Tang XS, et al. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small. 2014;10(3):514-23. [Crossref]  [PubMed]  [PMC]
  44. Nishida E, Miyaji H, Takita H, Kanayama I, Tsuji M, Akasaka T, et al. Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering. Japan J Appl Phys. 2014;53(6):1-4. [Crossref]
  45. Kawamoto K, Miyaji H, Nishida E, Miyata S, Kato A, Tateyama A. Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog. Int J Nanomed. 2018;13:2365-76. [Crossref]  [PubMed]  [PMC]
  46. Fabbri P, Valentini L, Hum J, Detsch R, Boccaccini AR. 45S5 Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene. 2013;33(7):3592-600. [Crossref]  [PubMed]
  47. Lim KT, Seonwoo H, Choi KS, Jin H, Jang KJ, Kim J, et al. Pulsed-electromagnetic-field-assisted reduced graphene oxide substrates for multidifferentiation of human mesenchymal stem cells. Adv Healthc Mater. 2016;5:2069-79. [Crossref]  [PubMed]
  48. Wei J, Qiao S, Zhang X, Li Y, Zhang Y, Wei S, et al. Graphene-reinforced titanium enhances soft tissue seal. Front Bioeng Biotechnol. 2021;9:665305. [Crossref]  [PubMed]  [PMC]
  49. La WG, Jin M, Park S, Yoon HH, Jeong GJ, Bhang SH, et al. Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int J Nanomed. 2014;9:107. [Crossref]  [PubMed]  [PMC]
  50. Amiryaghoubi N, Pesyan NN, Fathi M, Omidi Y. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. Int J Biol Macromol. 2020;162:1338-57. [Crossref]  [PubMed]